Powered by OpenAIRE graph

HyGear B.V.

HYGEAR BV
Country: Netherlands
36 Projects, page 1 of 8
  • Funder: European Commission Project Code: 760930
    Overall Budget: 2,578,970 EURFunder Contribution: 2,578,970 EUR

    The use of solar energy for photoelectrochemically splitting water into H2 and O2 has been widely investigated for producing sustainable H2 fuel. However, no commercialisation of this technology has emerged. Currently the main obstacles to commercialisation are: low solar-to-hydrogen efficiency, expensive electrode materials, fast degradation of prototypes, and energy losses in separating H2 from O2 and water vapour in the output stream. The FotoH2 consortium has identified a new scientific direction for achieving cost-effective solar-driven H2 production, and it has the capability of large-scale prototyping and field testing the proposed technology. FotoH2 introduces anion-exchange polymer membrane and porous hydrophobic backing concepts in a tandem photoelectrochemical cell, and a novel way to stabilise the photoelectrodes based on a surface phase transformation. This approach allows the use of cost-effective metal oxide electrodes with optimal bandgaps and a simple flow-cell design without corrosive electrolytes. Apart from the already identified Fe2O3/CuO couple, a theoretical screening of earth abundant metal ternary oxides will be done to identify the most promising materials. These chosen electrode materials will be optimized by doping, nanostructuring and by introducing protective and passivating external layers by the phase transformation strategy. Most of these concepts have been already validated at TRL 3 and preliminary laboratory prototypes were demonstrated. The aim is to increase the TRL to 5 by validating the technology in a system with a module of 1 m2 and achieve a photoelectrolysis device with solar to-hydrogen efficiency of 10 % and a prospective life-time of 20 years. We aim for breakthroughs in cell lifetime, conversion efficiency, cost-efficiency, and H2 purity. To bring these innovations to market, an exploitation plan is addressed. The consortium includes materials developers and suppliers, device manufacturers and system integrator.

    more_vert
  • Funder: European Commission Project Code: 278538
    more_vert
  • Funder: European Commission Project Code: 245224
    more_vert
  • Funder: European Commission Project Code: 779694
    Overall Budget: 2,499,920 EURFunder Contribution: 2,499,920 EUR

    Hydrogen is a versatile energy carrier that will allow the EU to accomplish its strategic targets of zero-emission mobility, integration of renewables and the decarbonisation of industry. However, its low density and explosive nature make hydrogen storage and transport technically challenging, inefficient and very expensive. The Liquid Organic Hydrogen Carrier (LOHC) technology enables safe and efficient high-density hydrogen storage in an easy-to-handle oil, thus eliminating the need for pressurized tanks for storage and transport. The HySTOC project will demonstrate LOHC-based distribution of high purity hydrogen (ISO 14687:2-2012) to a commercially operated hydrogen refueling station (HRS) in Voikoski, Finland, in an unprecedented field test. Dibenzyltoluene, the LOHC material used within HySTOC is not classified as a dangerous good, is hardly flammable and offers a five-fold increase in storage capacity compared with standard high pressure technology, leading to a transport cost reduction of up to 80%. HySTOC comprises 5 partners (including 2 SMEs, 1 industrial and 2 scientific partners) from 3 European countries (Finland, Germany, The Netherlands). The partners cover the whole value chain from basic research and testing (FAU & VTT) through core technology development (Hydrogenious Technologies and HyGear) to the end-user that will operate the LOHC-based hydrogen infrastructure (Woikoski). The comprehensive and complementary mixture of expertise and know-how provided by the consortium ensures not only an efficient realization of the technical and (pre )commercial objectives of the project, but also the subsequent dissemination and exploitation of the achieved results to maximize its impact within the consortium and the hydrogen market as a whole. In the long term, the LOHC technology developed within HySTOC will allow integration of renewable energy by making it available to hydrogen mobility in an easy-to-handle form and will thus help decarbonize the world.

    more_vert
  • Funder: European Commission Project Code: 325361
    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.