Powered by OpenAIRE graph

MAGB

The Maltsters' Association of Great Britain (United Kingdom)
Country: United Kingdom
3 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: BB/D522003/1
    Funder Contribution: 549,379 GBP

    Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

    more_vert
  • Funder: UK Research and Innovation Project Code: BB/H004580/1
    Funder Contribution: 149,534 GBP

    Fusarium head blight (FHB) of cereals is caused by a number of fungi, chiefly Fusarium species. It is of particular concern because the Fusarium species produce trichothecene mycotoxins (DON, NIV, T2 and HT-2) within grain that are harmful to human and animal consumers. FHB disease poses an increasing threat to the UK wheat and barley crops. New species have appeared and spread in the UK for which climate change may, in part, be responsible. Future predicted climate changes are likely to exacerbate risks of epidemics in the UK. The EU recently set limits for DON and limits for T2/HT-2 are imminent. It is vital that the UK is positioned to be able to comply with this legislation. It is widely recognised that resistant varieties offer the best option to control FHB. All wheat and barley breeders consider it as a major but difficult target for resistance breeding. Incorporation of high levels of resistance to FHB into wheat and barley will be critical to prevent DON, T2, HT-2 and NIV mycotoxin contamination of grain from becoming a major problem for all elements of the UK food and feed chains. Timely application with appropriate fungicides can restrict disease development and mycotoxin accumulation. Under moderate to high disease pressure, however, fungicide application often fails to reduce DON contamination to below EU legislative limits in susceptible varieties such as those currently grown in the UK. Our previous work showed that much of the susceptibility of UK varieties is due to linkage between a gene that affects the height of wheat, Rht2 (also referred to as Rht-D1b) which is in almost all UK varieties, with a gene nearby on the chromosome that increases susceptibility to FHB. This association must be broken to enable breeders to produce FHB resistant varieties with acceptable agronomic characters. The project will produce molecular markers to the region about Rht2 allowing plant breeders to maintain this agronomically important gene in their breeding programmes while selecting against the linked FHB susceptibility factor. This project aims to identify resistance to Fusarium head blight (FHB) in wheat and barley that will function against all the causal fungi associated with this disease. This project will focus on the identification of Type 1 resistance (resistance to initial infection) in wheat and barley. We have developed new tools to characterise so-called 'Type 1' resistance (resistance to initial infection), which is important for preventing infection of wheat and barley against Fusarium species that produce DON mycotoxin and those that produce the more toxic T2 and HT-2 toxins as well as against non toxin producing FHB pathogens such as Microdochium species. Plant breeding companies can immediately use the plant materials, genetic knowledge and molecular markers linked to FHB resistance within their breeding programmes to produce new resistant varieties with good characters for growing as crops in the UK. This project will determine how fungicide application influences disease and toxin accumulation in varieties with different levels of FHB resistance. The project will demonstrate how individual FHB resistances affect the RL disease score, revealing how many, and what forms of resistance are required to ensure that toxin levels in UK grain do not exceed EU limits. The project will identify the components required to establish a sustainable, integrated approach to ensure that toxin levels in cereal grain remain below EU limits. An integrated approach, based on varieties with significantly enhanced resistance and appropriate fungicide application offers the best means to achieve sustainable control of FHB and minimise the risk of mycotoxins entering the food and feed chains.

    more_vert
  • Funder: UK Research and Innovation Project Code: BB/K008188/1
    Funder Contribution: 624,435 GBP

    Maltsters, brewers and distillers are concerned about the long-term sustainability of the barley crop. Seasonal problems in many parts of Europe resulted in a restricted malting barley supply that has only just been alleviated by an above average harvest in Argentina. Within the UK, drought conditions resulted in reduced barley crop quality, i.e. higher protein samples, particularly in Eastern England, where much English malting barley is sourced. Under predicted climate change scenarios, such drought conditions are likely to become more frequent and will affect the spring crop much more than the winter crop, which can escape the worst effects of summer drought through a much earlier maturity. Whilst winter barley might therefore provide a more consistent supply, the proportion bought by English maltsters has declined by over 25% over the past 20 years. This decline is due to the reduced quality level of the winter crop compared to the spring so that distillers can produce 16 more litres of raw spirit per tonne of malt on average from the latter. For an industry predicted to use 600,000t of barley from the 2012 harvest, this is a highly significant difference in production efficiency. All current UK winter barley malting varieties have been derived from Maris Otter, first recommended in 1965. Maris Otter combined the spring malting quality attributes of an older variety, Proctor, with the winter habit of Pioneer. Proctor was the major spring malting variety in the UK for many years but the introduction of Triumph was a quantum leap forward for the spring crop in terms of both quality and yield. In a previous project, we have analysed DNA fingerprints of UK spring and winter barley malting cultivars to identify genetic differences between the two crops that are associated with malting quality. Whilst plant breeders have previously tried to introgress spring quality attributes into winter barley, they have relied on chance events to assemble the right genes, which is an impossible task when the crops differ at thousands of genes. But we now have the knowledge and tools to conduct the introgression of spring attributes into winter barley in a highly targeted manner to test the hypothesis that their introduction will improve winter malting quality. The germplasm emerging from this proposal will then be used by the plant breeding partners of the project in further rounds of crossing and selection to develop improved winter malting quality cultivars that approached the spring quality levels but in a suitable agronomic background for contemporary farming practise and would thus re-generate interest in using winter barley for malting for use in brewing and distilling. As indicated in the previous paragraph, greater use of the winter crop is likely to provide a more consistent supply of malting barley in the future. As malting supplies are becoming tighter due to a variety of market factors, a switch to the higher yielding winter crop would also mean that the effects of competition for land for more profitable crops would have a less pronounced effect upon malting barley supply. As six row barley varieties tend to have a higher yield than two row, a longer term aim is to develop six row malting types that would further decrease the land area required to secure a malting barley supply.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.