Powered by OpenAIRE graph

Airbus Defence and Space

Airbus Defence and Space

22 Projects, page 1 of 5
  • Funder: UK Research and Innovation Project Code: EP/S022139/1
    Funder Contribution: 5,695,180 GBP

    This proposal seeks funding to create a Centre for Doctoral Training (CDT) in Connected Electronic and Photonic Systems (CEPS). Photonics has moved from a niche industry to being embedded in the majority of deployed systems, ranging from sensing, biophotonics and advanced manufacturing, through communications from the chip-to-chip to transcontinental scale, to display technologies, bringing higher resolution, lower power operation and enabling new ways of human-machine interaction. These advances have set the scene for a major change in commercialisation activity where electronics photonics and wireless converge in a wide range of information, sensing, communications, manufacturing and personal healthcare systems. Currently manufactured systems are realised by combining separately developed photonics, electronic and wireless components. This approach is labour intensive and requires many electrical interconnects as well as optical alignment on the micron scale. Devices are optimised separately and then brought together to meet systems specifications. Such an approach, although it has delivered remarkable results, not least the communications systems upon which the internet depends, limits the benefits that could come from systems-led design and the development of technologies for seamless integration of electronic photonics and wireless systems. To realise such connected systems requires researchers who have not only deep understanding of their specialist area, but also an excellent understanding across the fields of electronic photonics and wireless hardware and software. This proposal seeks to meet this important need, building upon the uniqueness and extent of the UCL and Cambridge research, where research activities are already focussing on higher levels of electronic, photonic and wireless integration; the convergence of wireless and optical communication systems; combined quantum and classical communication systems; the application of THz and optical low-latency connections in data centres; techniques for the low-cost roll-out of optical fibre to replace the copper network; the substitution of many conventional lighting products with photonic light sources and extensive application of photonics in medical diagnostics and personalised medicine. Many of these activities will increasingly rely on more advanced systems integration, and so the proposed CDT includes experts in electronic circuits, wireless systems and software. By drawing these complementary activities together, and building upon initial work towards this goal carried out within our previously funded CDT in Integrated Photonic and Electronic Systems, it is proposed to develop an advanced training programme to equip the next generation of very high calibre doctoral students with the required technical expertise, responsible innovation (RI), commercial and business skills to enable the £90 billion annual turnover UK electronics and photonics industry to create the closely integrated systems of the future. The CEPS CDT will provide a wide range of methods for learning for research students, well beyond that conventionally available, so that they can gain the required skills. In addition to conventional lectures and seminars, for example, there will be bespoke experimental coursework activities, reading clubs, roadmapping activities, responsible innovation (RI) studies, secondments to companies and other research laboratories and business planning courses. Connecting electronic and photonic systems is likely to expand the range of applications into which these technologies are deployed in other key sectors of the economy, such as industrial manufacturing, consumer electronics, data processing, defence, energy, engineering, security and medicine. As a result, a key feature of the CDT will be a developed awareness in its student cohorts of the breadth of opportunity available and the confidence that they can make strong impact thereon.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S023836/1
    Funder Contribution: 5,780,930 GBP

    The EPSRC Centre for Doctoral Training in Renewable Energy Northeast Universities (ReNU) is driven by industry and market needs, which indicate unprecedented growth in renewable and distributed energy to 2050. This growth is underpinned by global demand for electricity which will outstrip growth in demand for other sources by more than two to one (The drivers of global energy demand growth to 2050, 2016, McKinsey). A significant part of this demand will arise from vast numbers of distributed, but interconnected devices (estimated to reach 40 billion by 2024) serving sectors such as healthcare (for ageing populations) and personal transport (for reduced carbon dioxide emission). The distinctive remit of ReNU therefore is to focus on materials innovations for small-to-medium scale energy conversion and storage technologies that are sustainable and highly scalable. ReNU will be delivered by Northumbria, Newcastle and Durham Universities, whose world-leading expertise and excellent links with industry in this area have been recognised by the recent award of the North East Centre for Energy Materials (NECEM, award number: EP/R021503/1). This research-focused programme will be highly complementary to ReNU which is a training-focused programme. A key strength of the ReNU consortium is the breadth of expertise across the energy sector, including: thin film and new materials; direct solar energy conversion; turbines for wind, wave and tidal energy; piezoelectric and thermoelectric devices; water splitting; CO2 valorisation; batteries and fuel cells. Working closely with a balanced portfolio of 36 partners that includes multinational companies, small and medium size enterprises and local Government organisations, the ReNU team has designed a compelling doctoral training programme which aims to engender entrepreneurial skills which will drive UK regional and national productivity in the area of Clean Growth, one of four Grand Challenges identified in the UK Government's recent Industrial Strategy. The same group of partners will also provide significant input to the ReNU in the form of industrial supervision, training for doctoral candidates and supervisors, and access to facilities and equipment. Success in renewable energy and sustainable distributed energy fundamentally requires a whole systems approach as well as understanding of political, social and technical contexts. ReNU's doctoral training is thus naturally suited to a cohort approach in which cross-fertilisation of knowledge and ideas is necessary and embedded. The training programme also aims to address broader challenges facing wider society including unconscious bias training and outreach to address diversity issues in science, technology, engineering and mathematics subjects and industries. Furthermore, external professional accreditation will be sought for ReNU from the Institute of Physics, Royal Society of Chemistry and Institute of Engineering Technology, thus providing a starting point from which doctoral graduates will work towards "Chartered" status. The combination of an industry-driven doctoral training programme to meet identifiable market needs, strong industrial commitment through the provision of training, facilities and supervision, an established platform of research excellence in energy materials between the institutions and unique training opportunities that include internationalisation and professional accreditation, creates a transformative programme to drive forward UK innovation in renewable and sustainable distributed energy.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/P01738X/1
    Funder Contribution: 1,218,260 GBP

    Over the last 10 years the number of operational satellites in orbit has grown from 450 to more than 1300. We rely on these satellites more than ever before for a wide range of applications such as mobile phones, TV signals, internet, navigation and financial services. All these satellites must be designed to withstand the harsh radiation environment in space for a design life that can be as long as 15 years or more. Space weather events can increase electron radiation levels by five orders of magnitude in the Earth's Van Allen radiation belts causing satellite charging, disruption to satellite operations and sometimes satellite loss. For example, in 2003 it was estimated that at least 10% of all operational satellites suffered anomalies (malfunctions1) during a large space weather event known as the Halloween storm. It is therefore important to understand how and why radiation levels vary so much so that engineers and business can assess impact and develop mitigation measures. New results from the NASA Van Allen Probes and THEMIS satellite missions show that wave-particle interactions play the major role in the acceleration, transport and loss of high energy electrons and hence the variability of the radiation belts. This proposal brings together scientists from across the UK with stakeholders from the insurance and satellite services sector. We will process data from scientific satellites such as Van Allen Probes and THEMIS to obtain information on four very important type of waves known as magnetosonic waves, and radio-waves known as plasmaspheric hiss, lightning generated whistlers and transmitter waves. We will use data, theory and models to determine the properties of the waves and how they vary during space weather events. We will conduct studies to assess the acceleration, transport and loss of electrons due to each wave type using quasi-linear theory. We will use simulations to test whether nonlinear effects result in more particle acceleration and loss compared to quasi-linear theory. We will analyse compressional magnetosonic waves in the ultra-low frequency range and determine their effectiveness for transporting electrons across the magnetic field, and whether the transport is diffusive or not. We will incorporate the results of these studies into our state-of-the-art global radiation belt model to simulate known space weather events, and compare the results against data to highlight the importance of the waves and improve the model. We will also include local time effects and compare loss rates against data from the ground and other satellites to constrain the model. We will simulate extreme space weather events using our existing radiation belt model, and an MHD model so that we can assess the role of waves in the rapid formation of a radiation belt such as occurred in 1991 in less than 2 minutes. We will develop a stakeholder community consisting of space insurance, satellite operators and forecasters who will provide input to our research and who will use the results for risk assessment, anomaly resolution and operational planning. The project will deliver new processed data, a better forecasting capability and expertise that will support the UK Government assessment of severe space weather for the National Risk Register2 and the growth of the satellite industry. 1. Cannon, P, S., et al. (2013), Extreme Space Weather: Impacts on Engineered Systems and Infrastructure, Royal Academy of Engineering, London, SW1A 2WH. 2. Cabinet Office, (2012), National risk register of civil emergencies, Whitehall, London SW1A 2WH, www.cabinetoffice.gov.uk.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V001914/1
    Funder Contribution: 7,671,800 GBP

    Development of materials has underpinned human and societal development for millennia, and such development has accelerated as time has passed. From the discovery of bronze through to wrought iron and then steel and polymers the visible world around has been shaped and built, relying on the intrinsic properties of these materials. In the 20th century a new materials revolution took place leading to the development of materials that are designed for their electronic (e.g. silicon), optical (e.g. glass fibres) or magnetic (e.g. recording media) properties. These materials changed the way we interact with the world and each other through the development of microelectronics (computers), the world wide web (optical fibre communications) and associated technologies. Now, two decades into the 21st century, we need to add more functionality into materials at ever smaller length-scales in order to develop ever more capable technologies with increased energy efficiency and at an acceptable manufacturing cost. In pursuing this ambition, we now find ourselves at the limit of current materials-processing technologies with an often complex interdependence of materials properties (e.g. thermal and electronic). As we approach length scales below 100s of nanometres, we have to harness quantum effects to address the need for devices with a step-change in performance and energy-efficiency, and ultimately for some cases the fundamental limitations of quantum mechanics. In this programme grant we will develop a new approach to delivering material functionalisation based on Nanoscale Advanced Materials Engineering (NAME). This approach will enable the modification of materials through the addition (doping) of single atoms through to many trillions with extreme accuracy (~20 nanometres, less than 1000th the thickness of a human hair). This will allow us to functionalise specifically a material in a highly localised location leaving the remaining material available for modification. For the first time this will offer a new approach to addressing the limitations faced by existing approaches in technology development at these small length scales. We will be able to change independently a material's electronic and thermal properties on the nanoscale, and use the precise doping to deliver enhanced optical functionality in engineered materials. Ambitiously, we aim to use NAME to control material properties which have to date proven difficult to exploit fully (e.g. quantum mechanical spin), and to control states of systems predicted but not yet directly experimentally observed or controlled (e.g. topological surface states). Ultimately, we may provide a viable route to the development of quantum bits (qubits) in materials which are a pre-requisite for the realisation of a quantum computer. Such a technology, albeit long term, is predicted to be the next great technological revolution NAME is a collaborative programme between internationally leading UK researchers from the Universities of Manchester, Leeds and Imperial College London, who together lead the Henry Royce Institute research theme identified as 'Atoms to Devices'. Together they have already established the required substantial infrastructure and state-of-the-art facilities through investment from Royce, the EPSRC and each University partner. The programme grant will provide the resource to assemble the wider team required to deliver the NAME vision, including UK academics, research fellows, and postdoctoral researchers, supported by PhD students funded by the Universities. The programme grant also has significant support from wider academia and industry based both within the UK and internationally.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P00945X/1
    Funder Contribution: 4,325,360 GBP

    Global demand for high power microwave electronic devices that can deliver power densities well exceeding current technology is increasing. In particular Gallium Nitride (GaN) based high electron mobility transistors (HEMTs) are a key enabling technology for high-efficiency military and civilian microwave systems, and increasingly for power conditioning applications in the low carbon economy. This material and device system well exceeds the performance permitted by the existing Si LDMOS, GaAs PHEMT or HBT technologies. GaN-based HEMTs have reached RF power levels up to 40 W/mm, and at frequencies exceeding 300 GHz, i.e., a spectacular performance enabling disruptive changes for many system applications. However, transistor reliability is driven by electric field and channel temperature, so self-heating means in practice that reliable devices can only be operated up to RF power densities of 10 W/mm in contrast to the 40 W/mm hero data published in the literature. Considerable concern also exists in the UK and across Europe that access to state-of-the-art GaN microwave technology is limited by US ITAR (International Traffic in Arms Regulation) restrictions. The most advanced capabilities for all elements of GaN HEMT technology, using traditional SiC substrates, epitaxy and device processing currently reside in the US, with restricted access by UK industry. The vision of Integrated GaN-Diamond Microwave Electronics: From Materials, Transistors to MMICs (GaN-DaME) is to develop transformative GaN-on-Diamond HEMTs and MMICs, the technology step beyond GaN-on-SiC, which will revolutionize the thermal management which presently limits GaN electronics. Challenges occur in terms of how to integrate such dissimilar materials into a reliable device technology. The outcome will be devices with a >5x increase in RF power compared to GaN-on-SiC, or alternatively and equally valuably, a dramatic 'step-change' shrinkage in MMIC or PA size, and hence an increase in efficiency through the removal of lossy combining networks as well as a reduction in power amplifier (PA) cost. This represents a disruptive change in capability that will allow the realisation of new system architectures e.g. for RF seekers and medical applications, and enable the bandwidths needed to deliver 5G and beyond. Reduced requirements for cooling / increased reliability will result in major cost savings at the system level. To enable our vision to become reality, we will develop new diamond growth approaches that maximize diamond thermal conductivity close to the active GaN device area. In present GaN-on-Diamond devices a thin dielectric layer is required on the GaN surface to enable seeding and successful deposition of diamond onto the GaN. Unfortunately, most of the thermal barrier in these devices then exists at this GaN-dielectric-diamond interface, which has much poorer thermal conductivity than desired. Any reduction in this thermal resistance, either by removing the need for a dielectric seeding layer for diamond growth, or by optimizing the grain structure of the diamond near the seeding, would be of huge benefit. Novel diamond growth will be combined with innovative micro-fluidics using phase-change materials, a dramatically more powerful approach than conventional micro-fluidics, to further aid heat extraction. An undiscussed consequence of using diamond, its low dielectric constant, which poses challenges and opportunities for microwave design will be exploited. At the most basic level, the reliability of this technology is not known. For instance, at the materials level the diamond and GaN have very different coefficients of thermal expansion (CTE). Mechanically rigid interfaces will need to be developed including interdigitated GaN-diamond interfaces.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.