National Grid PLC
National Grid PLC
94 Projects, page 1 of 19
assignment_turned_in Project2006 - 2011Partners:National Grid PLC, National Grid (United Kingdom), The University of Manchester, University of Salford, University of ManchesterNational Grid PLC,National Grid (United Kingdom),The University of Manchester,University of Salford,University of ManchesterFunder: UK Research and Innovation Project Code: EP/E009735/1Funder Contribution: 818,335 GBPThe aim of this proposal is to appoint an additional professor in the field of electrical energy and power systems at The University of Manchester. Since candidates for this position cannot hold a permanent academic position in the UK, his/her appointment will increase the pool of experienced researchers working in a field that has been recognised as being not only critical to the health of the UK economy and quality of life but also below the critical mass required for a sector undergoing a major transition.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1f0ac68db1665400e6661dfc83ea4cd6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::1f0ac68db1665400e6661dfc83ea4cd6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2018 - 2020Partners:Imperial College London, ABB (Switzerland), National Grid PLC, National Grid (United Kingdom), ABB (United Kingdom)Imperial College London,ABB (Switzerland),National Grid PLC,National Grid (United Kingdom),ABB (United Kingdom)Funder: UK Research and Innovation Project Code: EP/S000909/1Funder Contribution: 299,551 GBPEnsuring system security and stability is an ever-present concern in power system engineering due to the crucial importance of reliable power supply in modern society. The growth of renewable energy increases the number of power electronic converters present in the power network since they are needed to interface non-conventional forms of generation to standard 50 or 60 Hz system. This changes the network's physical structure and causes new threats to security. Compared to conventional power equipment, power electronic converters are subject to rigid capacity constraints which make them prone to lose functionalities during large disturbances and trigger fault cascading. On the other hand, converters have higher flexibility and faster response which enable more versatile patterns of dynamic control. Therefore, a new methodology for both converter design and system operation is needed to take advantage of the strengths and mitigate the weaknesses of converters in supporting grid security. This problem is difficult because power electronic converters have sophisticated internal dynamics which further interact with a complex power network with a vast number of nodes and uncertain disturbance scenarios. What adds to the difficulty is that converters and networks are created by very different owners and supply chains that newly come together but still have different perspectives and technical languages. This fellowship aims to establish a common technology framework for converter manufacturers and network operators, and find a systematic methodology and practical tools for grid-supportive converter design and converter-based grid security management. The proposed research sets out to do three things. First, it will find analytical methods to quantify the support provided by and stress placed on converters regarding network security, from which converter design guidelines will be derived to optimize the security support functions in a cost-effective way. Second, it will build computational platforms for network operators to use a vast number of converters synergistically for real-time security management. Third, it will develop proof-of-concept prototypes, demonstrate their application potential in a complex power system, and promote commercialization and standardization.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f111a5c538f97bdb9b9b3e60ac26974f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::f111a5c538f97bdb9b9b3e60ac26974f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2017 - 2018Partners:The University of Manchester, University of Manchester, National Grid PLC, University of Salford, National Grid (United Kingdom)The University of Manchester,University of Manchester,National Grid PLC,University of Salford,National Grid (United Kingdom)Funder: UK Research and Innovation Project Code: EP/P030343/1Funder Contribution: 1,856,630 GBPThe UK needs to reduce the amount of fossil fuels it uses for heating / transport to reduce the amount of carbon dioxide we emit into the atmosphere. Replacing fossil fuels will only be possible through the use of more electricity generated from low carbon sources (nuclear, wind, solar and marine). Estimates suggest the electricity transmission system may need to carry a peak power four times higher than is carried today. The power that flows through the transmission system will also become more intermittent as wind and solar power is dependent on variable weather conditions. We therefore need to develop a new generation of equipment that can be used to carry electricity from generator to customer. This equipment needs to be cost-effective and have a minimal impact on the environment (whether this be measured in terms of visual impact, noise, ability to recycle at end of life or a whole range of other factors). The advances in disciplines such as material science mean there are many exciting opportunities to examine new ways to manufacture and operate transformers, overhead lines, cables and circuit breakers that will be used on the electrical transmission system. We need to have facilities that are capable of translating underpinning science at the scale of full size transmission system equipment. We need to ensure we can test objects measuring some metres in length with a maximum weight of thousands of kilograms. We need to apply over 400,000 volts continuously to this equipment and at times up to 1.6 million volts to simulate the impact of lightning. We can only do that using a specialist facility that includes a large space into which we can place equipment and the high voltage test sets. The test supplies must be capable of testing equipment when we spray water onto surfaces in a way that represents rainfall. It must operate 'quietly' and allow us to measure extremely small electromagnetic signals associated with failures in insulation systems. Delivering this test facility will ensure we can help the efforts to decarbonise the UK energy system. The facility will allow the UK academic community to play a leading role in the global research community that is developing new insulation systems and the next generation of transmission system equipment. Working with the new full-size substation being developed by National Grid to test equipment for prolonged periods, we will attract industry to the UK and will support the efforts of smaller companies to convert their ideas into reality. Through the facility we will train the next generation of engineers who will support the efforts to develop a low carbon electricity system that is reliable and provides low cost energy to customers for many years to come.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c4571ff7eeed3f462aff22e5a5593c3d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c4571ff7eeed3f462aff22e5a5593c3d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2016 - 2017Partners:University of Manchester, The University of Manchester, University of Salford, National Grid (United Kingdom), National Grid PLCUniversity of Manchester,The University of Manchester,University of Salford,National Grid (United Kingdom),National Grid PLCFunder: UK Research and Innovation Project Code: EP/N004310/1Funder Contribution: 99,237 GBPIt is very important that the electrical power grid is secure and reliable. Almost all aspects of our lives are dependent on electricity, from basic needs like heating and lighting to medical technology and vast city infrastructure and transportation systems. Just one day of blackout would cost the UK billions of pounds in lost revenue from businesses that are unable to operate - and the impact on society would be enormous. It is also very important that we begin, as a nation, to generate more electricity from low-carbon, renewable technologies such as solar and wind power. This is essential to ensure that we slow the effects of climate change and develop energy resources which will last for future generations. Renewable energy sources are unpredictable - we just don't know exactly how much electricity we can generate from the wind turbines or solar panels day-to-day. We can make predictions but they are uncertain predictions - we can't make guarantees. Unfortunately this doesn't help when it comes to making sure our electricity supply is secure and reliable. Electrical demand has to be balanced with electrical generation at every instant. We presently don't have the technology to store electricity on a large scale (we can't build batteries that could power the whole country), and the unpredictability of large numbers of wind farms and solar panels makes it harder and harder to keep the system balanced. Get this balance wrong, and the system could collapse, potentially resulting in a nation-wide blackout. To make matters worse, this is just one source of uncertainty among many others that affect the performance of electricity grids. For example, the wide-scale uptake of electric vehicles will add lots more demand for electricity which can literally move around the network - so not only is there uncertainty over when the vehicle is charged, but also where it is charged. There is a pressing need to fully understand how uncertainties will impact on the performance of power systems. This begins by building an understanding of which uncertainties are the most important. There are so many potential sources of uncertainty that getting enough data to understand how they all change would be completely impractical. Instead, if we can identify the most important uncertainties - the critical uncertainties that dominate the way the electricity grid behaves - we can focus our future attention on understanding those first, and stopping them from causing any problems. Identifying these uncertainties is not a simple task and requires new tools and techniques to be developed. These tools not only need to examine all possible consequences of all the possible scenarios (as it is usually unexpected scenarios that cause the most problems), but also need to quantify the importance of different sources of uncertainty in practical terms so power system engineers can be confident in the decisions they are making. This project will develop these tools in the form of new software algorithms which will be thoroughly tested to find their strengths and limitations. This work will provide the foundation for future research on uncertainty in electrical power grids, helping to identify and solve critical issues to improve the security and reliability of the electricity supply.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0b50f167011f86ad38114ca5aeac5278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::0b50f167011f86ad38114ca5aeac5278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2020 - 2022Partners:National Grid (United Kingdom), University of Bath, National Grid PLC, ABB (United Kingdom), ABB (Switzerland) +1 partnersNational Grid (United Kingdom),University of Bath,National Grid PLC,ABB (United Kingdom),ABB (Switzerland),University of BathFunder: UK Research and Innovation Project Code: EP/S000909/2Funder Contribution: 106,355 GBPEnsuring system security and stability is an ever-present concern in power system engineering due to the crucial importance of reliable power supply in modern society. The growth of renewable energy increases the number of power electronic converters present in the power network since they are needed to interface non-conventional forms of generation to standard 50 or 60 Hz system. This changes the network's physical structure and causes new threats to security. Compared to conventional power equipment, power electronic converters are subject to rigid capacity constraints which make them prone to lose functionalities during large disturbances and trigger fault cascading. On the other hand, converters have higher flexibility and faster response which enable more versatile patterns of dynamic control. Therefore, a new methodology for both converter design and system operation is needed to take advantage of the strengths and mitigate the weaknesses of converters in supporting grid security. This problem is difficult because power electronic converters have sophisticated internal dynamics which further interact with a complex power network with a vast number of nodes and uncertain disturbance scenarios. What adds to the difficulty is that converters and networks are created by very different owners and supply chains that newly come together but still have different perspectives and technical languages. This fellowship aims to establish a common technology framework for converter manufacturers and network operators, and find a systematic methodology and practical tools for grid-supportive converter design and converter-based grid security management. The proposed research sets out to do three things. First, it will find analytical methods to quantify the support provided by and stress placed on converters regarding network security, from which converter design guidelines will be derived to optimize the security support functions in a cost-effective way. Second, it will build computational platforms for network operators to use a vast number of converters synergistically for real-time security management. Third, it will develop proof-of-concept prototypes, demonstrate their application potential in a complex power system, and promote commercialization and standardization.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a24b4d250449cdc3b5a2fa74252867bf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::a24b4d250449cdc3b5a2fa74252867bf&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right