Lhyfe UK Ltd
Lhyfe UK Ltd
2 Projects, page 1 of 1
assignment_turned_in Project2024 - 2028Partners:Scottish and Southern Energy SSE plc, Northern Gas Networks, National Grid (United Kingdom), Robert Bosch (Germany), Wales & West Utilities +36 partnersScottish and Southern Energy SSE plc,Northern Gas Networks,National Grid (United Kingdom),Robert Bosch (Germany),Wales & West Utilities,Loganair Limited,Shell (Netherlands),International Energy Research Centre,Celsa Steel UK,University of Surrey,Port of Tyne,Toshiba Europe Limited (UK),British Engines Limited,Simply Blue Energy,TUV SUD (UK),Lhyfe UK Ltd,EI-H2,Cadent Gas Ltd,Build Solar Limited,Donegal County Council,IGEM (Inst of Gas Engineers & Managers),North of Tyne Combined Authority,Electric Aviation Group,The Crichton Trust,Scottish Water (United Kingdom),North East LEP (Local Enterprise),Siemens Energy Ltd,Mutual Energy Limited,Altrad Babcock,Environmental Resources Management (United Kingdom),Energy Technology Partnership,HyDEX,GE (General Electric Company) UK,B9 Energy Ltd,Department for Transport,Scottish Enterprise,University of Galway,University of Birmingham,Northern Powergrid (United Kingdom),Horiba UK Ltd,OFFSHORE RENEWABLE ENERGY CATAPULTFunder: UK Research and Innovation Project Code: EP/X038823/2Funder Contribution: 9,864,320 GBPHydrogen and alternative liquid fuels (HALF) have an essential role in the net-zero transition by providing connectivity and flexibility across the energy system. Despite advancements in the field of hydrogen research both in the physical sciences and engineering, significant barriers remain to the scalable adoption of hydrogen and alternative liquid fuel technologies, and energy services, into the UK's local and national whole system infrastructure. These are technical barriers, organisational barriers, regulatory and societal barriers, and financial barriers. There are, therefore, significant gaps between current levels of hydrogen production, transportation, storage, conversion, and usage, and the estimated requirement for achieving net-zero by 2050. To address this, our proposed research programme has four interlinked work packages. WP1 will develop forward-thinking HALF technology roadmaps. We will assess supply chain availability and security. Selected representative HALF use cases will be used to identify and quantify any opportunities, risks and dependencies within a whole systems analysis. We will also develop an overarching roadmap for HALF system integration in order to inform technology advancement, industry and business development, as well as policy making and social interventions. WP2 will improve HALF characterisation and explore urgent new perspectives on the energy transition, including those related to ensuring resilience and security while also achieving net-zero. We will contrast the energy transition delivered by real incentives/behaviour versus those projected by widely-used optimisation models. The WP provides the whole systems modelling engine of the HI-ACT Hub, with a diverse array of state-of-the-art tools to explore HALF integration. WP 3 will explore the vital coupling of data and information relating to whole system planning and operational decision support, through the creation of a cyber physical architecture (CPA). This will generate new learning on current and future opportunities and risks, from a data and information perspective, which will lead to a whole system ontology for accelerated integration of hydrogen technologies. WP 4 considers options for a future energy system with HALF from a number of perspectives. The first is to consider expert views on HALF energy futures, and the public perceptions of those views. The second perspective considers place-based options for social benefit in HALF energy futures. The third perspective is to consider regulatory and policy options which would better enable HALF futures. Embedded across the research programme is the intent to create robust tools which are investment-oriented in their analysis. A Whole Systems and Energy Systems Integration approach is needed here, in order to better understand the interconnected and interdependent nature of complex energy systems from a technical, social, environmental and economic perspective. The Hub is led by Prof Sara Walker, Director of the EPSRC National Centre for Energy Systems Integration, supported by a team of 16 academics at a range of career stages. The team have extensive experience of large energy research projects and strong networks of stakeholders across England, Wales, Scotland and Northern Ireland. They bring to the Hub major hydrogen demonstrators through support from partners involved in InTEGReL in Gateshead, ReFLEX in Orkney, and FLEXIS Demonstration in South Wales for example. We shall engage to create a vibrant, diverse, and open community that has a deeper understanding of whole systems approaches and the role of hydrogen and alternative liquid fuels within that. We shall do so in a way which embeds Equality, Diversity and Inclusion in the approach. We shall do so in a way which is a hybrid of virtual and in-person field work consultation and develop appropriate digital tools for engagement.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::792c56160b9cb33951b50d4f10143b19&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::792c56160b9cb33951b50d4f10143b19&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2023 - 2024Partners:The Crichton Trust, Altrad Babcock, Energy Technology Partnership, TÜV SÜD (United Kingdom), Scottish Enterprise +41 partnersThe Crichton Trust,Altrad Babcock,Energy Technology Partnership,TÜV SÜD (United Kingdom),Scottish Enterprise,Toshiba Europe Limited (UK),Donegal County Council,Newcastle University,HyDEX,Northern Gas Networks,GE (General Electric Company) UK,International Energy Research Centre,University of Surrey,Shell (Netherlands),Wales & West Utilities,Loganair Limited,Lhyfe UK Ltd,General Electric (United Kingdom),B9 Energy Ltd,Scottish and Southern Energy (United Kingdom),Offshore Renewable Energy Catapult,EI-H2,Build Solar Limited,Port of Tyne,Cadent Gas Ltd,IGEM (Inst of Gas Engineers & Managers),Electric Aviation Group,Siemens Energy Ltd,Mutual Energy Limited,Environmental Resources Management (United Kingdom),UoG,Celsa Steel UK,British Engines Limited,Simply Blue Energy,North of Tyne Combined Authority,Scottish Water (United Kingdom),Scottish and Southern Energy SSE plc,Department for Transport,University of Galway,Northern Powergrid (United Kingdom),Horiba UK Ltd,National Grid (United Kingdom),OFFSHORE RENEWABLE ENERGY CATAPULT,Robert Bosch (Germany),TUV SUD (UK),North East LEP (Local Enterprise)Funder: UK Research and Innovation Project Code: EP/X038823/1Funder Contribution: 10,675,400 GBPHydrogen and alternative liquid fuels (HALF) have an essential role in the net-zero transition by providing connectivity and flexibility across the energy system. Despite advancements in the field of hydrogen research both in the physical sciences and engineering, significant barriers remain to the scalable adoption of hydrogen and alternative liquid fuel technologies, and energy services, into the UK's local and national whole system infrastructure. These are technical barriers, organisational barriers, regulatory and societal barriers, and financial barriers. There are, therefore, significant gaps between current levels of hydrogen production, transportation, storage, conversion, and usage, and the estimated requirement for achieving net-zero by 2050. To address this, our proposed research programme has four interlinked work packages. WP1 will develop forward-thinking HALF technology roadmaps. We will assess supply chain availability and security. Selected representative HALF use cases will be used to identify and quantify any opportunities, risks and dependencies within a whole systems analysis. We will also develop an overarching roadmap for HALF system integration in order to inform technology advancement, industry and business development, as well as policy making and social interventions. WP2 will improve HALF characterisation and explore urgent new perspectives on the energy transition, including those related to ensuring resilience and security while also achieving net-zero. We will contrast the energy transition delivered by real incentives/behaviour versus those projected by widely-used optimisation models. The WP provides the whole systems modelling engine of the HI-ACT Hub, with a diverse array of state-of-the-art tools to explore HALF integration. WP 3 will explore the vital coupling of data and information relating to whole system planning and operational decision support, through the creation of a cyber physical architecture (CPA). This will generate new learning on current and future opportunities and risks, from a data and information perspective, which will lead to a whole system ontology for accelerated integration of hydrogen technologies. WP 4 considers options for a future energy system with HALF from a number of perspectives. The first is to consider expert views on HALF energy futures, and the public perceptions of those views. The second perspective considers place-based options for social benefit in HALF energy futures. The third perspective is to consider regulatory and policy options which would better enable HALF futures. Embedded across the research programme is the intent to create robust tools which are investment-oriented in their analysis. A Whole Systems and Energy Systems Integration approach is needed here, in order to better understand the interconnected and interdependent nature of complex energy systems from a technical, social, environmental and economic perspective. The Hub is led by Prof Sara Walker, Director of the EPSRC National Centre for Energy Systems Integration, supported by a team of 16 academics at a range of career stages. The team have extensive experience of large energy research projects and strong networks of stakeholders across England, Wales, Scotland and Northern Ireland. They bring to the Hub major hydrogen demonstrators through support from partners involved in InTEGReL in Gateshead, ReFLEX in Orkney, and FLEXIS Demonstration in South Wales for example. We shall engage to create a vibrant, diverse, and open community that has a deeper understanding of whole systems approaches and the role of hydrogen and alternative liquid fuels within that. We shall do so in a way which embeds Equality, Diversity and Inclusion in the approach. We shall do so in a way which is a hybrid of virtual and in-person field work consultation and develop appropriate digital tools for engagement.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4b63c7a2f52b9669a0ef20ef69a7fa94&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::4b63c7a2f52b9669a0ef20ef69a7fa94&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu