Siemens plc (UK)
Siemens plc (UK)
98 Projects, page 1 of 20
assignment_turned_in Project2018 - 2021Partners:SIEMENS PLC, University of Bath, University of Bath, Siemens plc (UK)SIEMENS PLC,University of Bath,University of Bath,Siemens plc (UK)Funder: UK Research and Innovation Project Code: EP/R021279/1Funder Contribution: 101,170 GBPThe primary users of gas turbines are being impacted by rising fossil fuel prices and stringent government targets for reducing carbon-dioxide emissions. This is putting increasing pressure on gas turbine manufacturers to improve engine efficiencies so that their products remain competitive. One way of improving the efficiency of a gas turbine is to raise the turbine entry temperature (TET). Present-day engines operate with TETs as high as 2000K, which is well above the melting point of the alloys from which first-stage turbine blades are made. Two cooling techniques are employed to prevent damage to the blades from high TETs: film cooling, where a thin film of coolant introduced to the external surface of the blade reduces the driving-temperature for heat transfer; and internal cooling, where coolant is passed through a series of passages within the blade to convect heat from the internal surfaces. The air for this cooling is taken from the compressor at a penalty to engine efficiency: for every 1% of air drawn from the compressor a 1% drop in isentropic efficiency follows. Relatively few experimental studies have investigated coupled film and internal cooling; consequently there are insufficient published data for validation of the models used to predict blade metal temperatures. There is little margin for error in these predictions: the life of a blade can be reduced by half if the temperature at which it operates is 10K higher than predicted. As a result, blades are often superfluously cooled at the expense of engine efficiency. Validated models would enable blade cooling schemes to be designed with more confidence. This would reduce design conservatism, enabling more efficiently cooled designs with an associated improvement in engine efficiency. It would also reduce the costly risk of re design or in-service replacement of inadequately cooled blades. The proposed project will design and build a highly-modular rig for obtaining fluid dynamic and heat transfer information on test pieces subjected to coupled film and internal cooling. The rig will make use of the University of Bath's state-of-the-art EPSRC funded Versatile Fluid Measurement System (VFMS), enabling high-precision measurements of heat transfer coefficients and temperatures on the surface of the test pieces, and the concentration field and three component velocities in the fluid volume above the film cooling holes. The flexibility of the facility combined with the unparalleled fidelity of measurement techniques offered through the VFMS will make it a highly novel and extremely useful platform for studying combined film-internal cooling. Findings from the project will provide unique insight into the fundamental science of the research problem and will supply Siemens - the industrial partner in this proposal - with data to validate their models and inform design methodology. The data will also be made available to workers in the wider gas turbine technical community and academia.
more_vert assignment_turned_in Project2020 - 2025Partners:Siemens plc (UK), Rolls-Royce (United Kingdom), Tracerco Ltd, Optosci Ltd, Tracerco Ltd +9 partnersSiemens plc (UK),Rolls-Royce (United Kingdom),Tracerco Ltd,Optosci Ltd,Tracerco Ltd,Optocap Ltd,Rolls-Royce,University of Strathclyde,M Squared Lasers (United Kingdom),SIEMENS PLC,Johnson Matthey plc,University of Strathclyde,Rolls-Royce,M Squared Lasers LtdFunder: UK Research and Innovation Project Code: EP/T012595/1Funder Contribution: 5,813,730 GBPThe ultimate ambition of the proposed research programme is reduced environmental impact of aviation and power generating gas turbine engines. Serious emissions reduction can only come from better understanding and modelling of the combustion and emissions generation processes and the roles of different fuels. Several disruptive chemical and particulate species measurement methods will be developed for detailed combustion zone and exhaust characterisation. These transformational new measurement capabilities will be applied to establishing, for the first, time the spatial and temporal evolution of combustion species and unwanted emissions within the engines. Such measurements will inform new understanding of the combustion and emissions generation processes and enable new technical strategies to ultimately deliver improved engine and fuel technologies for reduced emissions.
more_vert assignment_turned_in Project2020 - 2025Partners:NIHR MindTech HTC, AXA Group, Netacea, Experian Ltd, AXA Group +126 partnersNIHR MindTech HTC,AXA Group,Netacea,Experian Ltd,AXA Group,National Gallery,LR IMEA,Mayor's Office for Policing and Crime,Maritime and Coastguard Agency,Department for Transport,Netacea,Unilever (United Kingdom),Lloyd's Register EMEA,Ministry of Defence,Intuitive Surgical Inc,THALES UK LIMITED,Max-Planck-Gymnasium,SparkCognition,RAC Foundation for Motoring,New Art Exchange,Institute of Mental Health,MICROSOFT RESEARCH LIMITED,Connected Everything Network+ (II),Advanced Mobility Research & Development,CITY ARTS (NOTTINGHAM) LTD,[no title available],Northrop Gruman,Ministry of Defence MOD,Shell Trading & Supply,XenZone,Advanced Mobility Research & Development,Connected Everything Network+ (II),Ultraleap,Alliance Innovation Laboratory,Northrop Gruman (UK),City Arts Nottingham Ltd,University of Southampton,BAE Systems,Siemens plc (UK),NquiringMinds Ltd,Capital One Bank Plc,BBC Television Centre/Wood Lane,MCA,Lykke Corp,Institution of Engineering & Technology,Rescue Global (UK),Experian Ltd,Boeing (United Kingdom),Mental Health Foundation,SparkCognition,Microsoft Research Ltd,Intuitive Surgical Inc,Lykke Corp,Mental Health Foundation,Harvard University,NIHR Nottingham Biomedical Research C,Ipsos MORI,Agility Design Solutions,Royal Academy of Engineering,BBC,Ministry of Defence (MOD),Harvard University,XenZone,J P Morgan,SCR,Harvard Medical School,Royal Signals Institution,Ipsos-MORI,Department for Culture Media and Sport,UKMSN+ (Manufacturing Symbiosis Network),University of Lincoln,NquiringMinds Ltd,NIHR Nottingham Biomedical Research C,DfT,SIEMENS PLC,Thales UK Limited,Royal Academy of Arts,QinetiQ,J P Morgan,SETsquared Partnership,Royal Academy of Arts,Setsquared,Shell Trading & Supply,SMRE,Microlise Group Ltd,DataSpartan Consulting,Thales Aerospace,Slaughter and May,RAC Foundation for Motoring,The National Gallery,Capital One Bank Plc,IMH,Royal Academy of Engineering,DEAS NetworkPlus (+),NIHR MindTech HTC,Siemens Process Systems Engineering Ltd,Ottawa Hospital,IBM Hursley,DataSpartan Consulting,Schlumberger Cambridge Research Limited,New Art Exchange,Rescue Global (UK),Health and Safety Executive (HSE),Qioptiq Ltd,UKMSN+ (Manufacturing Symbiosis Network),NNT Group (Nippon Teleg Teleph Corp),LU,NNT Group (Nippon Teleg Teleph Corp),Siemens Healthcare Ltd,Bae Systems Defence Ltd,Department for Culture Media and Sport,Microlise Group Ltd,The Institution of Engineering and Tech,IBM Hursley,DEAS NetworkPlus (+),Boeing United Kingdom Limited,Slaughter and May,Ultraleap,Mayor's Office for Policing and Crime,University of Southampton,Royal Signals Institution,BAE SYSTEMS PLC,Unilever R&D,Alliance Innovation Laboratory,Health and Safety Executive,Unilever UK & Ireland,The Foundation for Science andTechnology,Ottawa Civic Hospital,The Foundation for Science andTechnology,Max Planck Institutes,British Broadcasting Corporation - BBCFunder: UK Research and Innovation Project Code: EP/V00784X/1Funder Contribution: 14,069,700 GBPPublic opinion on complex scientific topics can have dramatic effects on industrial sectors (e.g. GM crops, fracking, global warming). In order to realise the industrial and societal benefits of Autonomous Systems, they must be trustworthy by design and default, judged both through objective processes of systematic assurance and certification, and via the more subjective lens of users, industry, and the public. To address this and deliver it across the Trustworthy Autonomous Systems (TAS) programme, the UK Research Hub for TAS (TAS-UK) assembles a team that is world renowned for research in understanding the socially embedded nature of technologies. TASK-UK will establish a collaborative platform for the UK to deliver world-leading best practices for the design, regulation and operation of 'socially beneficial' autonomous systems which are both trustworthy in principle, and trusted in practice by individuals, society and government. TAS-UK will work to bring together those within a broader landscape of TAS research, including the TAS nodes, to deliver the fundamental scientific principles that underpin TAS; it will provide a focal point for market and society-led research into TAS; and provide a visible and open door to engage a broad range of end-users, international collaborators and investors. TAS-UK will do this by delivering three key programmes to deliver the overall TAS programme, including the Research Programme, the Advocacy & Engagement Programme, and the Skills Programme. The core of the Research Programme is to amplify and shape TAS research and innovation in the UK, building on existing programmes and linking with the seven TAS nodes to deliver a coherent programme to ensure coverage of the fundamental research issues. The Advocacy & Engagement Programme will create a set of mechanisms for engagement and co-creation with the public, public sector actors, government, the third sector, and industry to help define best practices, assurance processes, and formulate policy. It will engage in cross-sector industry and partner connection and brokering across nodes. The Skills Programme will create a structured pipeline for future leaders in TAS research and innovation with new training programmes and openly available resources for broader upskilling and reskilling in TAS industry.
more_vert assignment_turned_in Project2014 - 2024Partners:McMaster University, Innospec Environmental Ltd, E.ON New Build and Technology Ltd, Innospec Environmental Ltd, Innospec (United Kingdom) +92 partnersMcMaster University,Innospec Environmental Ltd,E.ON New Build and Technology Ltd,Innospec Environmental Ltd,Innospec (United Kingdom),ZJOU,C-Capture Limited,ETI,Process Systems Enterprises Ltd,E.ON New Build and Technology Ltd,EDF Energy (United Kingdom),NPL,Cochin University,University of the Witwatersrand,Air Products and Chemicals plc,RWE npower,Chinese Academy of Science,SMRE,Scottish and Southern Energy SSE plc,British Energy Generation Ltd,ANSYS UK LIMITED,E-ON UK plc,Alstom Ltd (UK),State University of Campinas (unicamp),National Carbon Institute (CSIC),EDF Energy Plc (UK),Indian Institute of Technology Guwahati,Scottish and Southern Energy SSE plc,National Physical Laboratory NPL,Southeast University,Chinese Academy of Sciences,Alstom (United Kingdom),Doosan (United Kingdom),Electric Power Research Institute EPRI,Advanced Power Generation Tech. Forum,2COenergy Limited,University of North Dakota,SIEMENS PLC,Air Products and Chemicals plc,Clean Coal Limited,2COenergy Limited,Biomass and Fossil Fuel Res Alliance,University of the Witwatersrand,Cochin University of Science and Technol,PNU,National Carbon Institute (CSIC),SEU,BF2RA,Doosan Power Systems,Johnson Matthey Plc,Advanced Power Generation Tech. Forum,University of Nottingham,PAU,Clean Coal Limited,Caterpillar Inc (Global),Huazhong University of Sci and Tech,University of Queensland,Johnson Matthey plc,UiS,NTU,XJTLU,Scottish and Southern Energy,Doosan Babcock Power Systems,ANSYS UK LIMITED,Energy Technologies Institute (ETI),CAS,Electric Power Research Institute EPRI,The University of Queensland,C-Capture Limited,Islamic University of Technology,UK High Temperature Power Plant Forum,Caterpillar UK Ltd,UK High Temperature Power Plant Forum,Health and Safety Executive (HSE),CMCL Innovations (United Kingdom),Polish Academy of Sciences,Health and Safety Executive,Xi'an Jiatong University,Coal Products Limited CPL,Tsinghua University,Process Systems Enterprises Ltd,University of North Dakota,CMCL Innovations,ISLAMIC UNIVERSITY OF TECHNOLOGY,Johnson Matthey,Alstom Ltd (UK),RWE Generation,Fluent Europe Ltd,State University of Campinas (UNICAMP),Siemens plc (UK),Indian Institute of Technology Guwahati,University of Queensland,Zhejiang University,Air Products (United Kingdom),Xi'an Jiaotong University,Tsinghua University,Coal Products Limited CPLFunder: UK Research and Innovation Project Code: EP/L016362/1Funder Contribution: 3,527,890 GBPThe motivation for this proposal is that the global reliance on fossil fuels is set to increase with the rapid growth of Asian economies and major discoveries of shale gas in developed nations. The strategic vision of the IDC is to develop a world-leading Centre for Industrial Doctoral Training focussed on delivering research leaders and next-generation innovators with broad economic, societal and contextual awareness, having strong technical skills and capable of operating in multi-disciplinary teams covering a range of knowledge transfer, deployment and policy roles. They will be able to analyse the overall economic context of projects and be aware of their social and ethical implications. These skills will enable them to contribute to stimulating UK-based industry to develop next-generation technologies to reduce greenhouse gas emissions from fossil fuels and ultimately improve the UK's position globally through increased jobs and exports. The Centre will involve over 50 recognised academics in carbon capture & storage (CCS) and cleaner fossil energy to provide comprehensive supervisory capacity across the theme for 70 doctoral students. It will provide an innovative training programme co-created in collaboration with our industrial partners to meet their advanced skills needs. The industrial letters of support demonstrate a strong need for the proposed Centre in terms of research to be conducted and PhDs that will be produced, with 10 new companies willing to join the proposed Centre including EDF Energy, Siemens, BOC Linde and Caterpillar, together with software companies, such as ANSYS, involved with power plant and CCS simulation. We maintain strong support from our current partners that include Doosan Babcock, Alstom Power, Air Products, the Energy Technologies Institute (ETI), Tata Steel, SSE, RWE npower, Johnson Matthey, E.ON, CPL Industries, Clean Coal Ltd and Innospec, together with the Biomass & Fossil Fuels Research Alliance (BF2RA), a grouping of companies across the power sector. Further, we have engaged SMEs, including CMCL Innovation, 2Co Energy, PSE and C-Capture, that have recently received Department of Energy and Climate Change (DECC)/Technology Strategy Board (TSB)/ETI/EC support for CCS projects. The active involvement companies have in the research projects, make an IDC the most effective form of CDT to directly contribute to the UK maintaining a strong R&D base across the fossil energy power and allied sectors and to meet the aims of the DECC CCS Roadmap in enabling industry to define projects fitting their R&D priorities. The major technical challenges over the next 10-20 years identified by our industrial partners are: (i) implementing new, more flexible and efficient fossil fuel power plant to meet peak demand as recognised by electricity market reform incentives in the Energy Bill, with efficiency improvements involving materials challenges and maximising biomass use in coal-fired plant; (ii) deploying CCS at commercial scale for near-zero emission power plant and developing cost reduction technologies which involves improving first-generation solvent-based capture processes, developing next-generation capture processes, and understanding the impact of impurities on CO2 transport and storage; (iimaximising the potential of unconventional gas, including shale gas, 'tight' gas and syngas produced from underground coal gasification; and (iii) developing technologies for vastly reduced CO2 emissions in other industrial sectors: iron and steel making, cement, refineries, domestic fuels and small-scale diesel power generatort and These challenges match closely those defined in EPSRC's Priority Area of 'CCS and cleaner fossil energy'. Further, they cover biomass firing in conventional plant defined in the Bioenergy Priority Area, where specific issues concern erosion, corrosion, slagging, fouling and overall supply chain economics.
more_vert assignment_turned_in Project2019 - 2024Partners:Department for Transport, Leeds City Council, Zero Carbon Futures, Accent, Arup Group +48 partnersDepartment for Transport,Leeds City Council,Zero Carbon Futures,Accent,Arup Group,Durham County Council,University of Leeds,Arup Group Ltd,Transport for the North,Zero Carbon Futures,Liverpool City Region LEP,Accenture (United Kingdom),SIEMENS PLC,Accent,Sustrans,Sheffield City Council,Durham County Council,Transport Systems Catapult,Nexus Ltd,CENTRICA PLC,DfT,Lancaster City Council,Transport for the North,TfGM,Transport Systems Catapult,Northern Gas Networks,Liverpool City Region LEP,NexusAB (United Kingdom),Fore Consulting Limited,Electricity North West Limited,Leeds City Council,Sustrans,LEEDS CITY COUNCIL,Urban Transport Group,Nexus Ltd,Centrica (United Kingdom),University of Leeds,Transport for Greater Manchester,Electricity North West (United Kingdom),Lancaster City Council,Urban Transport Group,Sheffield City Council,ELECTRICITY NORTH WEST LIMITED,Centrica Plc,The Climate Change Committe,Hyundai-Kia Motors,First Group,Siemens plc (UK),Ove Arup & Partners Ltd,Fore Consulting Limited,Hyundai-Kia Motors,First Group,The Committee on Climate ChangeFunder: UK Research and Innovation Project Code: EP/S032002/1Funder Contribution: 1,334,520 GBPThe latest report from the Intergovernmental Panel on Climate Change in 2018 highlighted the need for urgent, transformative change, on an unprecedented scale, if global warming is to be restricted to 1.5C. The challenge of reaching an 80% reduction in emissions by 2050 represents a huge technological, engineering, policy and societal challenge for the next 30 years. This is a huge challenge for the transport sector, which accounts for over a quarter of UK domestic greenhouse gas emissions and has a flat emissions profile over recent years. The DecarboN8 project will develop a new network of researchers, working closely with industry and government, capable of designing solutions which can be deployed rapidly and at scale. It will develop answers to questions such as: 1) How can different places be rapidly switched to electromobility for personal travel? How do decisions on the private fleet interact with the quite different decarbonisation strategies for heavy vehicles? This requires integrating understanding of the changing carbon impacts of these options with knowledge on how energy systems work and are regulated with the operational realities of transport systems and their regulatory environment; and 2) What is the right balance between infrastructure expansion, intelligent system management and demand management? Will the embodied carbon emissions of major new infrastructure offset gains from improved flows and could these be delivered in other ways through technology? If so, how quickly could this happen, what are the societal implications and how will this impact on the resilience of our systems? The answer to these questions is unlikely to the same everywhere in the UK but little attention is paid to where the answers might be different and why. Coupled with boundaries between local government areas, transport network providers (road and rail in particular) and service operators there is potential for a lack of joined up approaches and stranded investments in ineffective technologies. The DecarboN8 network is led by the eight most research intensive Universities across the North of England (Durham, Lancaster, Leeds, Liverpool, Manchester, Newcastle, Sheffield and York) who will work with local, regional and national stakeholders to create an integrated test and research environment across the North in which national and international researchers can study the decarbonisation challenge at these different scales. The DecarboN8 network is organised across four integrated research themes (carbon pathways, social acceptance and societal readiness, future transport fuels and fuelling, digitisation, demand and infrastructure). These themes form the structure for a series of twelve research workshops which will bring new research interests together to better understand the specific challenges of the transport sector and then to work together on integrating solutions. The approach will incorporate throughout an emphasis on working with real world problems in 'places' to develop knowledge which is situated in a range of contexts. £400k of research funding will be available for the development of new collaborations, particularly for early career researchers. We will distribute this in a fair, open and transparent manner to promote excellent research. The network will help develop a more integrated environment for the development, testing and rapid deployment of solutions through activities including identifying and classifying data sources, holding innovation translation events, policy discussion forums and major events to highlight the opportunities and innovations. The research will involve industry and government stakeholders and citizens throughout to ensure the research outcomes meet the ambitions of the network of accelerating the rapid decarbonisation of transport.
more_vert
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
