Powered by OpenAIRE graph

ARD

AGRO INDUSTRIE RECHERCHES ET DEVELOPPEMENT
Country: France
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
3 Projects, page 1 of 1
  • Funder: French National Research Agency (ANR) Project Code: ANR-05-BIOE-0005

    Le Laboratoire de Biotechnologie et Bioprocédé, les sociétés Lesaffre, ARD, Safisis et Maguin proposent un projet de conversion biologique des hydrolysats lignocellulosiques de paille de blé en éthanol à usage biocarburant. Il s’agit de sélectionner un ou des micro-organismes capables de fermenter les sucres C6 et C5 issus du traitement de la paille de blé, de le mettre en oeuvre dans une configuration de bioprocédé associant saccharification, fermentation et valorisation des produits et co-produits dans des conditions optimales de productivité, titre et rendements. Une attention particulière sera accordée à l’influence des inhibiteurs HMF et furfural sur la conversion microbienne. Nous proposons la démonstration à l’échelle du laboratoire, à l’échelle pilote pré-industriel et la validation au niveau de l’application des procédés industriels destinés à la production d’éthanol. Dans une action fédérative, cette démonstration s’étend de la préparation du substrat selon les recommandations des projets retenus dans les phases amont du programme, la fermentation et la distillation. L’analyse technico-économique sera confiée à Organibio. Il mobilise des chercheurs et des industriels majeurs du domaine. D’une durée de trois ans, ce projet constitue une étape indispensable au lancement d’une véritable filière industrielle compétitive de production nationale de biocarburants, tout en contribuant au respect des engagements français dans le domaine du Développement durable.

    more_vert
  • Funder: French National Research Agency (ANR) Project Code: ANR-10-BIOE-0005
    Funder Contribution: 775,457 EUR

    The fundamental research project HYCOFOL_BV (Production of hydrogen from plant biomass by a combination of light and dark fermentation processes) involves 4 public research laboratories (CEA, CNRS, IRD and BRGM) and 1 industrial (ARD). Its aim is to propose a bioprocess for the production of hydrogen from wheat straw, an agricultural by-product. The treatment of this biomass releases an effluent rich in pentose and hexose sugars that can be converted biologically into H2 by fermentation. The first stage of the bioprocess involves fermentation at high temperature (70-80°C) by hyperthermophilic bacteria of the order Thermotogales, which can ferment pentose and hexose sugars into acetate, CO2 and H2. The second stage involves photofermentation of acetate in the light, using mesophilic, photoheterotrophic bacteria of the genus Rhodobacter. The coupling of these two processes can theoretically lead to a complete conversion of sugars into hydrogen, with a maximum theoetical yield of 12 mol H2/mol glucose. At first, the industrial substrate (wheat straw), after pretreatment by the industrial partner according to a procedure developed during the project SPPECABBE (ANR PNR-B 2005-2008), will be characterized physicochemically and microbiologically. A laboratory collection of hyperthermophilic bacteria will be screened for their ability to degrade cellulose and hemicellulose, with or without pretreatment, and to tranform the free sugars into H2. The fermentation at high temperature will then be studied, using the best strain or strains selected, using first a synthetic medium based on the composition of the industrial substrate and then the industrial substrate itself. The fermentation and culture parameters will be determined in terms of the conversion efficiency of the different sugars into H2, but also taking into account the compatibility of the end-products with the photofermentation stage and the microbiological stability of the process. In fact, the fate of the hyperthermpohilic bacteria, as well as that of the microbial poulation present intially in the industrial substrate, will be followed throughout the process using the tehcniques of molecular microbial ecology. Photosynthetic bacteria are theoretically able to convert organic acids, such as acetate, completely into H2 and CO2. However, in practice, the yields are much lower and depend on the strain and the operating conditions. In the present project we propose to use molecular gentic, biochemicaland process engineering approaches to optimize the photoproduction of H2 from acetate. H2-overproducing strains of Rhodobacter capsulatus, isolated in the laboratory, will be studied for their ability to degrade acetate into H2 and the limiting steps wil be identified. The efficiency of photfemprenation will then be determined using, first, the effluent from high temperature fermentation of the synthetic medium, and second, the effluent from high temperature fermentation of the industrial substrate. The microbial population will also be followed during the photofermentation stage in order to evaluate the microbiological stabiltiy of the process. The effect of the photobioreactor configuration on the efficiency of H2 production will also be studied. The pluridisciplinarity of the different partners involved in the project, and their competence in the areas of high-temperature fermenation, photofermentation and molecular microbial ecology, will alow them to solve eventual problems, such as inhibition of the photofermentation step by the effluent from the high temperature reactor or interference by contaminating microorganisms. The results obtained will be used to evaluate the feasability of a coupled process involving high-temperature fermenation and photofermentation for the transfomation of a plant biomass into H2.

    more_vert
  • Funder: European Commission Project Code: 289196
    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.