Powered by OpenAIRE graph

Phase Change Material Products Limited

Phase Change Material Products Limited

3 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/N007557/1
    Funder Contribution: 100,276 GBP

    The UK Government is committed to reduce greenhouse gas emissions by at least 80% (from the 1990 baseline) by 2050. There is therefore an urgent need for a radical reduction in the UK dependence on fossil fuel based heating in buildings. The vital role of the building envelope in building energy efficiency and thermal comfort has long been recognized, though until recently, all effort and attention has been focused on optimising the insulation and envelope components. It has become evident that new and more innovative ideas and technologies are needed to improve the energy efficiency of existing envelopes. The benefits from such innovative technologies are of extreme importance as the building envelope plays a major role in the energy flow in and out of buildings. The building envelope also offers significant opportunities to exploit solar energy through integrating solar thermal technologies into the buildings. Many different approaches have been adopted to reduce energy consumption in the built environment, including insulation, on-site renewable energy generation and storage. The active generation of energy from building integrated structures has been largely confined to a few countries. Research has shown the potential for active generation of solar thermal energy and its integration into the built environment, but this approach is not widely accepted in industry due to complexity, design criteria and high initial cost. This project develops previous theoretical work on responsive building envelopes by Dr. Shukla, PI of the proposed project. The proposed design incorporates many novel features, and its in-lab performance will be tested and evaluated. The basis of the proposed envelope system utilises a perforated metal profile attached to the exterior of a building, and an underlying layer of heat storage material separated by an air gap. Initial research and simulation suggests that total energy savings in the range of 30-50% can be achieved, depending upon the type of building and set point temperature used in UK buildings. The proposed design operates close to ambient temperature, thus using solar and ambient energy to warm and cool the building envelope more efficiently by minimising losses. The design of the perforated metal profile will provide enough buoyancy force through a temperature gradient across the metal profile to move air through correctly positioned gaps at a very low velocity and so maximise the benefits of the system. For the required heat transfer between air and heated boundary layer of ALIVE, it is vital that the approach air velocity is low. This will also provide enough time for the PCM to store surplus energy that can be released to heat or cool the building as required. The heated boundary layer across the building envelope will also help in minimising heat loss from the building envelope. The proposed building envelope has the potential to significantly reduce the thickness of insulation used in buildings. This project has been developed by the PI after discussion with industry partners working in the area of sustainable building envelope design, active generation of energy from building integrated structures and potential users of the proposed technology that includes housing organisations. The proposed research project will consist of three main elements; numerical simulations and mathematical modelling, indoor testing and electrical simulations to determine optimum performance of the system and environmental and economic assessment of the technology. The use of PCM in the envelope design will also be investigated to determine how the introduction of this material affects heat transfer between the building envelope and the micro-climate created around the building. The project will include a detailed analysis of the proposed system through lab testing, numerical simulation and mathematical modelling to evaluate the performance of the system.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/T015535/1
    Funder Contribution: 779,376 GBP

    Globally food chains experience substantial losses which for horticulture products can be as high as 70% of production. This represents 8 percent of global Greenhouse Gas Emissions, and substantial loss of resources such as water and energy. Food losses and waste result from to many reasons, which include inadequate infrastructure and lack or unreliable energy supply, lack of skills and access to markets. A key contributor to food loss in developing countries and in particular Africa and India is the very limited availability of cold food chains for the preservation and temperature controlled distribution of fresh produce to markets. The Sol-Tech project aims to make a contribution to addressing the food waste challenge and key Sustainable Development Challenges and Goals, including halving food waste by 2030, providing access to energy for all and alleviation of poverty and malnutrition. This will be achieved by building on previous and current research to develop to commercialisation stage an innovative but affordable solar powered modular fresh food cold storage and first mile distribution system for application in areas with no or limited and unreliable access to the electricity grid. Sol-Tech will involve collaboration between academic and industry partners from the UK, Africa and India to ensure that the technology development and commercialisation is informed by developing country needs and local political, socioeconomic and market conditions. The innovation potential and impact of the technology are substantial. Major innovations include: i) significant, up to 40% reduction of the thermal load of food transport refrigeration insulated boxes; ii) the use of solar energy to power on-board refrigeration systems and hybrid electrical and thermal energy storage to eliminate fossil fuel demand for precooling, storage and distribution of fresh produce; iii) adaptable on-board microclimate control and communication system to minimise transpiration losses, increase shelf life and maximise product quality at point of delivery. The project will also investigate and develop appropriate business models and commercialisation strategies tailored to specific local markets to ensure successful product commercialisation and maximum impact.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/V017160/1
    Funder Contribution: 714,051 GBP

    Natural flows shape our environment. Virtually every part of the planet can be put in the context, or at the interface, of transdisciplinary processes shaped by fluid dynamics, from: mantle convection, driving tectonic plate movement and geohazards; energy sources driving ocean currents and mixing, controlling marine life; the dispersal of water, nutrients and pollutants through terrestrial systems, critical to life on land; to the risks from extreme weather, in a changing climate. Although, numerical models exist that capture many aspects of these flows, they are fundamentally limited by the complexity, and critically, the range of scales present in the natural environment. Thus, lack of understanding of the natural world often stems from lack of empirical data of environmental flows. Empirical data are key to motivate new understanding of fluid dynamics and thus the natural environment. Data are often derived from controlled experiments, studying fundamental processes. Yet, to deliver impact, these processes need to be placed in real-world context. Three-dimensional, and temporal, data are key to understand complex flows inherent to nature. Yet whilst common in numerical models, such data are rare in current empirical research. Our capability to quantify the dynamics of environmental flows is in many respects more limited than numerical models. Only now has recent advances in technology placed the ability to address long-standing limitations of empirical data of environmental flows within our grasp. The Future of Advanced Metrology for Environmental fluid dynamics (FAME) project makes a world-leading contribution to research capability, by: 1) advancing globally unique capacity to collect complete empirical datasets of environmental flows; 2) scaling experimental fluid dynamics to the real-world. Synergistic integration of a suite of novel equipment, based on novel volumetric flow measurement, addresses these goals and supports step-change advances across natural environmental science. Leading experts at Hull, extensively supported by academia and industry, will integrate the suite of new equipment, including: Advanced optical flow measurement equipment that can disentangle the dynamics of the different fluid, particulate and chemical components that comprise natural flows; Submersible optical measurement equipment that translates capability to resolve flows, previously only available in laboratory conditions, to real-world scales; and Acoustic imaging of naturally cloudy environmental flows, where optical techniques cannot be used. Through integration of this suite of equipment, FAME affords globally unique capability to resolve flows across a range of environments and scales, providing new data needed for research into key societal challenges. By enabling access to both equipment, and critically the unique datasets that will be generated, FAME will motivate the next generation of community research into the natural environment.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.