Powered by OpenAIRE graph

Wideblue Ltd

3 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/Y035089/1
    Funder Contribution: 7,909,260 GBP

    Quantum Technology is based on quantum phenomena that govern physics on an atomic scale, enabling key breakthroughs that enhance the performance of classical devices and allow for entirely new applications in communications technology, imaging and sensing, and computation. Quantum networks will provide secure communication on a global scale, quantum sensors will revolutionise measurements in fields such as geology and biomedical imaging, and quantum computers will efficiently solve problems that are intractable even on the best future supercomputers. The economic and societal benefit will be decisive, impacting a wide range of industries and markets, including engineering, medicine, finance, defence, aerospace, energy and transport. Consequently, Quantum Technologies are being prioritised worldwide through large-scale national or trans-national initiatives, and a healthy national industrial Quantum Technology ecosystem has emerged including supply chain, business start-ups, and commercial end users. Our Centre for Doctoral Training in Applied Quantum Technologies (CDT-AQT) will address the national need to train cohorts of future quantum scientists and engineers for this emerging industry. The training program is a partnership between the Universities of Strathclyde, Glasgow and Heriot-Watt. In collaboration with more than 30 UK industry partners, CDT-AQT will offer advanced training in broad aspects of Quantum Technology, from technical underpinnings to applications in the three key areas of Quantum Measurement and Sensing, Quantum Computing and Simulation, and Quantum Communications. Our programme is designed to create a diverse community of responsible future leaders who will tackle scientific and engineering challenges in the emerging industrial landscape, bring innovative ideas to market, and work towards securing the UK's competitiveness in one of the most advanced and promising areas of the high-tech industry. The quality of our training provision is ensured by our supervisors' world-class research backgrounds, well-resourced research environments at the host institutions, and access to national strategic facilities. Industry engagement in co-creation and co-supervision is seen as crucial in equipping our students with the transferable skills needed to translate fundamental quantum physics into practical quantum technologies for research, industry, and society. To benefit the wider community immediately, we will make Quantum Technologies accessible to the general public through dedicated outreach activities, in which our students will showcase their research and exhibit at University Open Days, schools, science centres and science festivals.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/Z533208/1
    Funder Contribution: 21,272,300 GBP

    o achieve this vision, we will address major global research challenges towards the establishment of the "quantum internet" —?globally interlinked quantum networks which connect quantum nodes via quantum channels co-existing with classical telecom networks. These research challenges include: low-noise quantum memories with long storage time; connecting quantum processors at all distance scales; long-haul and high-rate quantum communication links; large-scale entanglement networks with agile routing capabilities compatible with - and embedded in - classical telecommunicatons networks; cost-effective scalability, standardisation, verification and certification. By delivering technologies and techniques to our industrial innovation partners, the IQN Hub will enable UK academia, national laboratories, industry, and end-users to be at the forefront of the quantum networking revolution. The Hub will utilise experience in the use of photonic entanglement for quantum key distribution (QKD) alongside state-of-the art quantum memory research from existing EPSRC Quantum Technology Hubs and other projects to form a formidable consortium tackling the identified challenges. We will research critical component technology, which will underpin the future national supply chain, and we will make steps towards global QKD and the intercontinental distribution of entanglement via satellites. This will utilise the Hub Network's in-orbit demonstrator due to be launched in late 2024, as well as collaboration with upcoming international missions. With the National Quantum Computing Centre (NQCC), we will explore applications towards quantum advantage demonstrations such as secure access to the quantum cloud, achievable only through entanglement networks. Hub partner National Physical Laboratory (NPL) working with our academic partners and the National Cyber Security Centre (NCSC) will ensure that our efforts are compatible with emerging quantum regulatory standards and post-quantum cybersecurity to bolster national security. We will foster synergies with competing international efforts through healthy exchange with our global partners. The Hub's strong industrial partner base will facilitate knowledge exchange and new venture creation. Achieving the IQN Hub's vision will provide a secure distributed and entanglement-enabled quantum communication infrastructure for UK end-users. Industry, government stakeholders and the public will be able to secure data in transit, in storage and in computation, exploiting unique quantum resources and functionalities. We will use a hybrid approach with existing classical cyber-security standards, including novel emerging post-quantum algorithms as well as hardware security modules. We will showcase our ambition with target use-cases that have emerged as barriers for industry, after years of investigation within the current EPSRC QT Hubs as well as other international efforts. These barriers include security and integrity of: (1) device authentication, identification, attestation, verification; (2) distributed and cloud computing; (3) detection, measurement, sensing, synchronisation. We will demonstrate novel applications as well as identify novel figures of merit (such as resilience, accuracy, sustainability, communication complexity, cost, integrity, etc.) beyond security enhancement alone to ensure the national quantum entanglement network can be fully exploited by our stakeholders and our technology can be rapidly translated into a commercial setting.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S022821/1
    Funder Contribution: 5,147,690 GBP

    In a consortium led by Heriot-Watt with St Andrews, Glasgow, Strathclyde, Edinburgh and Dundee, this proposal for an "EPSRC CDT in Industry-Inspired Photonic Imaging, Sensing and Analysis" responds to the priority area in Imaging, Sensing and Analysis. It recognises the foundational role of photonics in many imaging and sensing technologies, while also noting the exciting opportunities to enhance their performance using emerging computational techniques like machine learning. Photonics' role in sensing and imaging is hard to overstate. Smart and autonomous systems are driving growth in lasers for automotive lidar and smartphone gesture recognition; photonic structural-health monitoring protects our road, rail, air and energy infrastructure; and spectroscopy continues to find new applications from identifying forgeries to detecting chemical-warfare agents. UK photonics companies addressing the sensing and imaging market are vital to our economy (see CfS) but their success is threatened by a lack of doctoral-level researchers with a breadth of knowledge and understanding of photonic imaging, sensing and analysis, coupled with high-level business, management and communication skills. By ensuring a supply of these individuals, our CDT will consolidate the UK industrial knowledge base, driving the high-growth export-led sectors of the economy whose photonics-enabled products and services have far-reaching impacts on society, from consumer technology and mobile computing devices to healthcare and security. Building on the success of our CDT in Applied Photonics, the proposed CDT will be configured with most (40) students pursuing an EngD degree, characterised by a research project originated by a company and hosted on their site. Recognizing that companies' interests span all technology readiness levels, we are introducing a PhD stream where some (15) students will pursue industrially relevant research in university labs, with more flexibility and technical risk than would be possible in an EngD project. Overwhelming industry commitment for over 100 projects represents a nearly 100% industrial oversubscription, with £4.38M cash and £5.56M in-kind support offered by major stakeholders including Fraunhofer UK, NPL, Renishaw, Thales, Gooch and Housego and Leonardo, as well as a number of SMEs. Our request to EPSRC for £4.86M will support 35 students, from a total of 40 EngD and 15 PhD researchers. The remaining students will be funded by industrial (£2.3M) and university (£0.93M) contributions, giving an exceptional 2:3 cash gearing of EPSRC funding, with more students trained and at a lower cost / head to the taxpayer than in our current CDT. For our centre to be reactive to industry's needs a diverse pool of supervisors is required. Across the consortium we have identified 72 core supervisors and a further 58 available for project supervision, whose 1679 papers since 2013 include 154 in Science / Nature / PRL, and whose active RCUK PI funding is £97M. All academics are experienced supervisors, with many current or former CDT supervisors. An 8-month frontloaded residential phase in St Andrews and Edinburgh will ensure the cohort gels strongly, and will equip students with the knowledge and skills they need before beginning their research projects. Business modules (x3) will bring each cohort back to Heriot-Watt for 1-week periods, and weekend skills workshops will be used to regularly reunite the cohort, further consolidating the peer-to-peer network. Core taught courses augmented with specialist options will total 120 credits, and will be supplemented by professional skills and responsible innovation training delivered by our industry partners and external providers. Governance will follow our current model, with a mixed academic-industry Management Committee and an independent International Advisory Board of world-leading experts.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.