Powered by OpenAIRE graph

AGC GLASS EUROPE SA

Country: Belgium

AGC GLASS EUROPE SA

5 Projects, page 1 of 1
  • Funder: European Commission Project Code: 241378
    more_vert
  • Funder: European Commission Project Code: 314407
    more_vert
  • Funder: European Commission Project Code: 686008
    Overall Budget: 10,368,700 EURFunder Contribution: 9,291,720 EUR

    RAISELIFE focuses on extending the in-service lifetime of five key materials for concentrated solar power technologies: 1) protective and anti-soiling coatings of primary reflectors, 2) high-reflective surfaces for heliostats, 3) high-temperature secondary reflectors, 4) receiver coatings for solar towers and line-focus collectors, 5) corrosion resistant high-temperature metals and coatings for steam and molten salts. The project brings together a broad consortium formed of industry partners, SMEs and research institutes of the concentrating solar thermal and material science sector. The scope has been significantly shaped by the leading EPC of solar tower technology, BrightSource, who constructed Ivanpah, the world’s largest solar tower plant. This unique constellation permits a direct transfer of the obtained results in RAISELIFE into new commercial solar thermal power plant projects within less than 5 years and helps to solve urgent matters of current commercial power plants (e.g. the high temperature oxidation of absorber coatings on metallic tower receivers). For this purpose several TRL6 functional materials are being tested in accelerated climate chamber tests, field-tests under elevated solar flux and in-service in BSIIs power plants, with the final goal of increasing durability and performance and in consequence reducing CAPEX and OPEX. We project that commercial implementation of the subject technologies could account for as much as 2.5-3 euro-cent Levelized Cost of Electricity (LCOE) reduction per kWh of electricity produced for solar tower technology between 2015 and 2020.

    more_vert
  • Funder: European Commission Project Code: 723868
    Overall Budget: 6,758,350 EURFunder Contribution: 5,201,840 EUR

    We will validate an affordable (28% reduction of total costs) and lightweight (35% weight reduction) solution for envelope insulation to bring existing curtain wall buildings to “nearly zero energy” standards while complying with the structural limits of the original building structure and national building codes. Two key commercial insulating products: • Highly insulating mono-component and environmentally friendly spray foam, EENSULATE foam, for the cost-effective automated manufacturing and insulation of the opaque components of curtain walls as well as for the significant reduction of thermal bridges during installation (SELENA and EVONIK in cooperation with ULSTER); • Lightweight and thin double pane vacuum glass, EENSULATE glass, for the insulation of the transparent component of curtain walls, manufactured through an innovative low temperature process using polymeric flexible adhesives and distributed getter technology, thus allowing to use both annealed and tempered glass as well as low emissivity coatings (AGC, SAES and TVITEC in cooperation with ULSTER and UNIVPM ). A multi-functional thermo-tunable coating will allow for dynamic solar gain control as well as anti-fogging and self-cleaning properties (AGC in cooperation with UCL). They will enable insulating solutions that Focchi, DAPP and Unstudio will promote with two different levels of performance: • EENSULATE Basic curtain wall modules where the thermal and acoustic insulation will be provided by the novel EENSULATE glass and EENSULATE foam in the spandrel combined with state of the art low-e coated glass; • EENSULATE Premium modules integrating the thermo-chromic coated glass with additional self-cleaning and anti-fogging functionalities. BGTEC will exploit the limited thickness and high insulating properties of the EENSULATE glass to introduce in their range innovative solutions for the fenestration challenges in historical buildings, compatible with the original window frames and sash designs.

    more_vert
  • Funder: European Commission Project Code: 769902
    Overall Budget: 8,958,010 EURFunder Contribution: 8,958,010 EUR

    The DOMUS project aims to change radically the way in which vehicle passenger compartments and their respective comfort control systems are designed so as to optimise energy use and efficiency while keeping user comfort and safety needs central. Although a more thorough understanding of thermal comfort over recent years has led to significant increases in energy efficiency through better insulation and natural ventilation, substantial room for improvement still exists. With Electric Vehicles (EVs) in particular, which are emerging as the most sustainable option for both satisfying the future mobility needs in Europe and reducing the impact on the environment, inefficiencies must be minimized due to their detrimental effect on the range. Starting with activities to gain a better understanding of comfort, combined with the development of numerical models which represent both the thermal and acoustic characteristics of the passenger compartment, DOMUS aims to create a validated framework for virtual assessment and optimization of the energy used. In parallel, innovative solutions for glazing, seats, insulation and radiant panels, will be developed along with controllers to optimize their performance individually and when operating in combination, the optimal configuration of which will be derived through numerical simulation. The aim is that the combined approach of innovating at a component level together with optimising the overall configuration will deliver at least the targeted 25% improvement in EV range without compromising passenger comfort and safety. Furthermore, the project will demonstrate the key elements of the new approach in a real prototype vehicle. As such DOMUS aims to create a revolutionary approach to the design of vehicles from a user-centric perspective for optimal efficiency, the application of which will be key to increasing range and hence customer acceptance and market penetration of EVs in Europe and around the world in the coming years.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.