Petroleum of Venezuela (Venezuela)
Petroleum of Venezuela (Venezuela)
3 Projects, page 1 of 1
assignment_turned_in Project2008 - 2011Partners:Institut de France, Statoil, SHELL GLOBAL SOLUTIONS INTERNATIONAL B.V., PETROBRAS Research and Development Cente, Norsk Hydro As +33 partnersInstitut de France,Statoil,SHELL GLOBAL SOLUTIONS INTERNATIONAL B.V.,PETROBRAS Research and Development Cente,Norsk Hydro As,NOVATICA TECHNOLOGIES LTD,Total E&P UK PLC,Total E&P UK PLC,KBC Advanced Technologies (United Kingdom),FEESA Limited,Petroleum of Venezuela (Venezuela),ExxonMobil,Eni (Italy),B P Exploration Co Ltd,PETROBRAS Research and Development Cente,ConocoPhillips UK Ltd,Advantica Technologies Ltd,SINTEF AS,Equinor (Norway),CD-adapco,Imperial College London,CD-adapco (United Kingdom),Scanpower Petroleum Technology AS,ConocoPhillips UK Limited,Institute of Oil Fuels and Lubricants,Norsk Hydro (Norway),STATOIL PETROLEUM,B P International Ltd,CD-adapco,PDVSA,Chevron Energy Technology Company,ENI Exploration & Production,Chevron (United States),Sintef Energi As,Scandpower Petroleum Technology AS,Exxon Mobil Upstream Research Co,Petrobras (Brazil),Shell (Netherlands)Funder: UK Research and Innovation Project Code: EP/F017448/1Funder Contribution: 235,485 GBPThis proposal addresses the vital issue of prediction of multiphase flows in large diameter risers in off-shore hydrocarbon recovery. The riser is essentially a vertical or near-vertical pipe connecting the sea-bed collection pipe network (the flowlines) to a sea-surface installation, typically a floating receiving and processing vessel. In the early years of oil and gas exploration and production, the oil and gas companies selected the largest and most accessible off-shore fields to develop first. In these systems, the risers were relatively short and had modest diameters. However, as these fields are being depleted, the oil and gas companies are being forced to look further afield for replacement reserves capable of being developed economically. This, then, has led to increased interest in deeper waters, and harsher and more remote environments, most notably in the Gulf of Mexico, the Brazilian Campos basin, West of Shetlands and the Angolan Aptian basin. Many of the major deepwater developments are located in water depths exceeding 1km (e.g. Elf's Girassol at 1300m or Petrobras' Roncador at 1500-2000m). To transport the produced fluids in such systems with the available pressure driving forces has led naturally to the specification of risers of much greater diameter (typically 300 mm) than those used previously (typically 75 mm). Investments in such systems have been, and will continue to be, huge (around $35 billion up to 2005) with the riser systems accounting for around 20% of the costs. Prediction of the performance of the multiphase flow riser systems is of vital importance but, very unfortunately, available methods for such prediction are of doubtful validity. The main reason for this is that the available data and methods have been based on measurements on smaller diameter tubes (typically 25-75 mm) and on the interpretation of these measurements in terms of the flow patterns occurring in such tubes. These flow patterns are typically bubble, slug, churn and annular flows. The limited amount of data available shows that the flow patterns in larger tubes may be quite different and that, within a given flow pattern, the detailed phenomena may also be different. For instance, there are reasons to believe that slug flow of the normal type (with liquid slugs separated by Taylor bubbles of classical shape) may not exist in large pipes. Methods to predict such flows with confidence will be improved significantly by means of an integrated programme of work at three universities (Nottingham, Cranfield and Imperial College) which will involve both larger scale investigations as well as investigations into specific phenomena at a more intimate scale together with modelling studies. Large facilities at Nottingham and Cranfield will be used for experiments in which the phase distribution about the pipe cross section will be measured using novel instrumentation which can handle a range of fluids. The Cranfield tests will be at a very large diameter (250 mm) but will be confined to vertical, air/water studies with special emphasis on large bubbles behaviour. In contrast those at Nottingham will employ a slightly smaller pipe diameter (125 mm) but will use newly built facilities in which a variety of fluids can be employed to vary physical properties systematically and can utilise vertical and slightly inclined test pipes. The work to be carried out at Imperial College will be experimental and numerical. The former will focus on examining the spatio-temporal evolution of waves in churn and annular flows in annulus geometries; the latter will use interface-tracking methods to perform simulations of bubbles in two-phase flow and will also focus on the development of a computer code capable of predicting reliably the flow behaviour in large diameter pipes. This code will use as input the information distilled from the other work-packages regarding the various flow regimes along the pipe.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3faab7db1a132f38cce7ddaaef387252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3faab7db1a132f38cce7ddaaef387252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2008 - 2011Partners:Statoil, NTU, Norsk Hydro As, PETROBRAS Research and Development Cente, KBC Advanced Technologies (United Kingdom) +34 partnersStatoil,NTU,Norsk Hydro As,PETROBRAS Research and Development Cente,KBC Advanced Technologies (United Kingdom),Advantica Technologies Ltd,PDVSA,B P International Ltd,ExxonMobil,SHELL GLOBAL SOLUTIONS INTERNATIONAL B.V.,Exxon Mobil Upstream Research Co,Scanpower Petroleum Technology AS,ConocoPhillips UK Ltd,NOVATICA TECHNOLOGIES LTD,Shell (Netherlands),Institut de France,Norsk Hydro (Norway),Sintef Energi As,University of Nottingham,Chevron (United States),Petroleum of Venezuela (Venezuela),FEESA Limited,Total E&P UK PLC,Petrobras (Brazil),Institute of Oil Fuels and Lubricants,ConocoPhillips UK Limited,Eni (Italy),Total E&P UK PLC,Chevron Energy Technology Company,Equinor (Norway),ENI Exploration & Production,STATOIL PETROLEUM,CD-adapco,CD-adapco,PETROBRAS Research and Development Cente,CD-adapco (United Kingdom),Scandpower Petroleum Technology AS,SINTEF AS,B P Exploration Co LtdFunder: UK Research and Innovation Project Code: EP/F016050/1Funder Contribution: 519,910 GBPThis proposal addresses the vital issue of prediction of multiphase flows in large diameter risers in off-shore hydrocarbon recovery. The riser is essentially a vertical or near-vertical pipe connecting the sea-bed collection pipe network (the flowlines) to a sea-surface installation, typically a floating receiving and processing vessel. In the early years of oil and gas exploration and production, the oil and gas companies selected the largest and most accessible off-shore fields to develop first. In these systems, the risers were relatively short and had modest diameters. However, as these fields are being depleted, the oil and gas companies are being forced to look further afield for replacement reserves capable of being developed economically. This, then, has led to increased interest in deeper waters, and harsher and more remote environments, most notably in the Gulf of Mexico, the Brazilian Campos basin, West of Shetlands and the Angolan Aptian basin. Many of the major deepwater developments are located in water depths exceeding 1km (e.g. Elf's Girassol at 1300m or Petrobras' Roncador at 1500-2000m). To transport the produced fluids in such systems with the available pressure driving forces has led naturally to the specification of risers of much greater diameter (typically 300 mm) than those used previously (typically 75 mm). Investments in such systems have been, and will continue to be, huge (around $35 billion up to 2005) with the riser systems accounting for around 20% of the costs. Prediction of the performance of the multiphase flow riser systems is of vital importance but, very unfortunately, available methods for such prediction are of doubtful validity. The main reason for this is that the available data and methods have been based on measurements on smaller diameter tubes (typically 25-75 mm) and on the interpretation of these measurements in terms of the flow patterns occurring in such tubes. These flow patterns are typically bubble, slug, churn and annular flows. The limited amount of data available shows that the flow patterns in larger tubes may be quite different and that, within a given flow pattern, the detailed phenomena may also be different. For instance, there are reasons to believe that slug flow of the normal type (with liquid slugs separated by Taylor bubbles of classical shape) may not exist in large pipes. Methods to predict such flows with confidence will be improved significantly by means of an integrated programme of work at three universities (Nottingham, Cranfield and Imperial College) which will involve both larger scale investigations as well as investigations into specific phenomena at a more intimate scale together with modelling studies. Large facilities at Nottingham and Cranfield will be used for experiments in which the phase distribution about the pipe cross section will be measured using novel instrumentation which can handle a range of fluids. The Cranfield tests will be at a very large diameter (250 mm) but will be confined to vertical, air/water studies with special emphasis on large bubbles behaviour. In contrast those at Nottingham will employ a slightly smaller pipe diameter (125 mm) but will use newly built facilities in which a variety of fluids can be employed to vary physical properties systematically and can utilise vertical and slightly inclined test pipes. The work to be carried out at Imperial College will be experimental and numerical. The former will focus on examining the spatio-temporal evolution of waves in churn and annular flows in annulus geometries; the latter will use interface-tracking methods to perform simulations of bubbles in two-phase flow and will also focus on the development of a computer code capable of predicting reliably the flow behaviour in large diameter pipes. This code will use as input the information distilled from the other work-packages regarding the various flow regimes along the pipe.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::165af55c00e071cbc371e22f5c79ed8c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::165af55c00e071cbc371e22f5c79ed8c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2008 - 2011Partners:CRANFIELD UNIVERSITY, ConocoPhillips UK Limited, Exxon Mobil Upstream Research Co, Chevron Energy Technology Company, ENI Exploration & Production +35 partnersCRANFIELD UNIVERSITY,ConocoPhillips UK Limited,Exxon Mobil Upstream Research Co,Chevron Energy Technology Company,ENI Exploration & Production,SHELL GLOBAL SOLUTIONS INTERNATIONAL B.V.,[no title available],PETROBRAS Research and Development Cente,B P International Ltd,Scandpower Petroleum Technology AS,Eni (Italy),Advantica Technologies Ltd,Petroleum of Venezuela (Venezuela),B P Exploration Co Ltd,KBC Advanced Technologies (United Kingdom),Petrobras (Brazil),STATOIL PETROLEUM,Equinor (Norway),CD-adapco,CD-adapco,Norsk Hydro (Norway),Institut de France,ConocoPhillips UK Ltd,PETROBRAS Research and Development Cente,SINTEF AS,ExxonMobil,Scanpower Petroleum Technology AS,FEESA Limited,Sintef Energi As,Cranfield University,CD-adapco (United Kingdom),Statoil,Norsk Hydro As,Shell (Netherlands),PDVSA,NOVATICA TECHNOLOGIES LTD,Institute of Oil Fuels and Lubricants,Total E&P UK PLC,Chevron (United States),Total E&P UK PLCFunder: UK Research and Innovation Project Code: EP/F016565/1Funder Contribution: 214,858 GBPThis proposal addresses the vital issue of prediction of multiphase flows in large diameter risers in off-shore hydrocarbon recovery. The riser is essentially a vertical or near-vertical pipe connecting the sea-bed collection pipe network (the flowlines) to a sea-surface installation, typically a floating receiving and processing vessel. In the early years of oil and gas exploration and production, the oil and gas companies selected the largest and most accessible off-shore fields to develop first. In these systems, the risers were relatively short and had modest diameters. However, as these fields are being depleted, the oil and gas companies are being forced to look further afield for replacement reserves capable of being developed economically. This, then, has led to increased interest in deeper waters, and harsher and more remote environments, most notably in the Gulf of Mexico, the Brazilian Campos basin, West of Shetlands and the Angolan Aptian basin. Many of the major deepwater developments are located in water depths exceeding 1km (e.g. Elf's Girassol at 1300m or Petrobras' Roncador at 1500-2000m). To transport the produced fluids in such systems with the available pressure driving forces has led naturally to the specification of risers of much greater diameter (typically 300 mm) than those used previously (typically 75 mm). Investments in such systems have been, and will continue to be, huge (around $35 billion up to 2005) with the riser systems accounting for around 20% of the costs. Prediction of the performance of the multiphase flow riser systems is of vital importance but, very unfortunately, available methods for such prediction are of doubtful validity. The main reason for this is that the available data and methods have been based on measurements on smaller diameter tubes (typically 25-75 mm) and on the interpretation of these measurements in terms of the flow patterns occurring in such tubes. These flow patterns are typically bubble, slug, churn and annular flows. The limited amount of data available shows that the flow patterns in larger tubes may be quite different and that, within a given flow pattern, the detailed phenomena may also be different. For instance, there are reasons to believe that slug flow of the normal type (with liquid slugs separated by Taylor bubbles of classical shape) may not exist in large pipes. Methods to predict such flows with confidence will be improved significantly by means of an integrated programme of work at three universities (Nottingham, Cranfield and Imperial College) which will involve both larger scale investigations as well as investigations into specific phenomena at a more intimate scale together with modelling studies. Large facilities at Nottingham and Cranfield will be used for experiments in which the phase distribution about the pipe cross section will be measured using novel instrumentation which can handle a range of fluids. The Cranfield tests will be at a very large diameter (250 mm) but will be confined to vertical, air/water studies with special emphasis on large bubbles behaviour. In contrast those at Nottingham will employ a slightly smaller pipe diameter (125 mm) but will use newly built facilities in which a variety of fluids can be employed to vary physical properties systematically and can utilise vertical and slightly inclined test pipes. The work to be carried out at Imperial College will be experimental and numerical. The former will focus on examining the spatio-temporal evolution of waves in churn and annular flows in annulus geometries; the latter will use interface-tracking methods to perform simulations of bubbles in two-phase flow and will also focus on the development of a computer code capable of predicting reliably the flow behaviour in large diameter pipes. This code will use as input the information distilled from the other work-packages regarding the various flow regimes along the pipe.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::cc5dc9ad04736dd78ff767026a7b062d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::cc5dc9ad04736dd78ff767026a7b062d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu