Powered by OpenAIRE graph

University of Miami

University of Miami

24 Projects, page 1 of 5
  • Funder: UK Research and Innovation Project Code: NE/E010393/1
    Funder Contribution: 51,022 GBP

    Many aquatic and marine organisms have a planktonic phase in their life history and spend the first days or weeks of their life drifting in plankton. Plankton may be carried great distances by ocean currents and enable new areas to be colonised and genes to be exchanged between apparently quite distant populations. Not surprisingly, the occurrence of a planktonic life phase strongly influences many evolutionary and ecological processes including the global distribution of species, the creation of new species, and the persistence of individual populations. The latter is particularly important for conservation. For example, lobsters in Cuba may launch their offspring into the plankton which later arrive in Florida. In this case, the number of lobsters in Florida may be highly dependent on the number of adult lobsters in Cuba and the populations require management at large scales. Understanding levels of larval exchange is vital for biodiversity conservation and fisheries management but few data are available. Two approaches are usually taken to infer levels of larval connectivity. The first uses detailed oceanographic models to predict the dispersal of 'virtual larvae' in ocean and coastal currents. The second examines the genetic structure of populations and identifies scales where little larval exchange occurs (i.e. relatively isolated populations). Rarely have both approaches been integrated, largely because of the challenges in sampling organisms across relevant spatial scales and the computational complexity of creating spatially-realistic models of circulation. However, it is highly desible to combine both approaches as they offer great synergy. In this proposal, we combine large-scale sampling of genetic structure with a state-of-the-art model of larval dispersal (published by our collaborators in Science earlier this year). We examine the genetic structure and larval connectivity of the massive coral Montastraea annularis which is found throughout the Caribbean Sea. Working with this coral has a number of advantages. Perhaps most importantly, its natural history is relatively easy to model which lends itself to modelling larval dispersal. Therefore, we are able to perform one of the clearest tests possible for agreement between modelled larval dispersal and observed genetic diversity. We have sampled the genetic diversity of M. annularis throughout the Caribbean Sea and will compare the observed patterns of gene flow to predicted levels of larval connectivity. Insight from this project will also support on-going activities to model the metapopulation dynamics of this important coral and design more appropriate algorithms for the selection of marine reserve networks.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/H009957/1
    Funder Contribution: 527,211 GBP

    The research proposed here aims to help us understand year-to-year variations in climate around the world. This includes the occurrence of floods and droughts, of heat waves and cold spells. To do this, we are going to examine the largest source of year-to-year climate variability on Earth, namely, El Niño. The El Niño is a warm ocean current that appears off the coast of NW South America every 3-5 years, and it is a result of a much larger scale phenomenon involving changes to the winds, rainfall, temperature and ocean currents across the whole of the tropical Pacific. The larger scale phenomenon is known as the El Niño Southern Oscillation, a name which reflects the fact that it involves a natural cycle in the circulation of both the atmosphere and the surface ocean and how they interact. Although we know that ENSO originates in the tropical Pacific, it has near world-wide impacts because of the way it affects the circulation of the atmosphere, and hence the winds and transport of moisture from the tropics to the extra-tropics. Floods and droughts and changed incidence of storminess from El Niño directly affect the lives and livelihoods of well over a billion people, and major El Niño events are associated with tens of thousands of human deaths, billions of pounds of damage, and devastation to some natural ecosystems such as coral reefs. Even Europe experiences changed weather patterns associated with ENSO! Although we now understand quite well the basic mechanisms behind the ENSO cycle, some major questions remain. In particular, we do not understand why some El Niño events are much stronger than others, why some decades show much stronger El Niño activity, or how ENSO will respond to climate change. To help answer some of these questions, we will reconstruct changes in ENSO over the past 5,000 years by analysing growth rings in the skeletons of old dead ('fossil') corals that lived in the Galápagos. The Galápagos Islands experience extreme changes in weather associated with El Niño (warmer and wetter during events), and these changes are recorded in the chemistry of the skeletons of corals living in the surrounding ocean. Some of these corals live for up to a hundred years, or longer, laying down layers of skeleton a bit like tree rings. We will collect cores through old dead corals, including some that lived thousands of years ago. Then, by analysing the chemistry of their growth bands we will be able to reconstruct the changes in climate, and ENSO, that the corals experienced during their life time. By combining the records from many such corals we will build up a picture of the natural variability in ENSO, helping us see how often major events occurred, and how much decade-to-decade variability in ENSO occurred. These coral records can let us reconstruct the history of past changes in ENSO, but on their own they do not help us to understand the causes of the changes. Were they due to changes in the sun's radiation? Or due to the cooling effects of major volcanic eruptions? Or were they simply random variations that we should expect without any sort of trigger? To answer these questions, we need to use climate models. The same models that we now use to predict future climate can be used to research changes in ENSO. In our work, we will use the most up-to-date climate models to see if they can correctly replicate the observed changes in ENSO over the past few thousand years as defined by our coral records. We can also see what the effects are of changing volcanic eruptions, solar radiation and greenhouse gases in these models. By comparing the model results with the coral records we will get a better understanding of the nature and causes of changes in ENSO, and the skill of the models at predicting this. In this way we will make a significant contribution to helping predict the likely range of ENSO-related climate events for the coming decades.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/R016704/1
    Funder Contribution: 755,988 GBP

    The Maritime Continent (MC) is the archipelago of tropical islands that lies between the Indian and Pacific Oceans, with a population of over 400 million. It comprises large (Sumatra, Java, Borneo, and New Guinea) and many smaller islands, with high mountains. High solar input warms the surrounding seas, which supply an abundance of moisture to the atmosphere, turning the whole region into an atmospheric "boiler box". Deep convective clouds rise up over the islands every day, leading to average rainfall rates in excess of 10 mm per day, approximately three times the rainfall rate over the UK. As well as supplying local agriculture, rain that falls over the MC has a far-reaching, global effect on weather and climate. Tremendous heat energy is released by condensation into the atmosphere in these convective clouds. This heat source drives giant, overturning circulations in the atmosphere: the Hadley and Walker cells, which feed into the jet streams and lead to weather and climate changes far downstream, even over the UK. For example, the origins of the infamous cold winter of 1962/63 and the recent very cold March of 2013 have been traced to atmospheric convection over the MC. For these reasons, the MC has been described as the engine room of the global climate system. Due to the complex nature of the distribution of the islands, and fundamental inadequacies in current models of the atmosphere (mainly related to their representation of convection), both climate predictions and weather forecasts show serious errors over the MC, particularly in their simulation of rainfall. Up until now, these errors have been extremely difficult to address, as there has been a lack of suitable observations over this region. Computing power, and the atmospheric modelling expertise to harness the advances in computing resources, has been inadequate to run computer models with sufficient detail to resolve the convective processes and their interactions, which are the building blocks of atmospheric circulation, for long enough to allow interactions with larger scales. However, we now stand on the cusp of transforming our understanding of atmospheric processes over the MC. Computer power and modelling expertise have progressed to the point where we have the capability to run simulations of the atmosphere at sufficient resolution to accurately capture the complex distribution of islands, and to accurately model the convective processes themselves. In response to this, the international Years of the Maritime Continent (YMC) field experiment (2017-2020) will make the measurements of the atmosphere and ocean at the very small scales that are needed to evaluate and understand the outputs of these new model simulations. Through TerraMaris the UK will take a leading role in YMC, by making observations of convective processes over the MC using the UK meteorological research aircraft, atmospheric radars, balloon and land-based measurements on the islands, and observing the surrounding seas using autonomous underwater and surface vehicles. This unprecedented suite of coordinated observations will complement measurements being taken by our international partners. The UK and the TerraMaris research team has led the way in developing high-resolution atmospheric modelling over recent years. We will apply the skills and knowledge learned to understand the complex mechanisms behind the multiple scales of convection and atmospheric circulations that have made the weather over the MC such a tough problem to crack. This knowledge will enable ground-breaking advances in atmospheric modelling, to improve weather forecasts and climate prediction over the MC region, with direct benefit to the substantial regional population. The downstream effects will see these benefits extend to the far corners of the globe, improving global and regional medium-range weather prediction, and climate projections.

    more_vert
  • Funder: UK Research and Innovation Project Code: BB/L025302/1
    Funder Contribution: 46,037 GBP

    Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/V011863/1
    Funder Contribution: 649,267 GBP

    Depletion of stratospheric ozone allows larger doses of harmful solar ultraviolet (UV) radiation to reach the surface leading to increases in skin cancer and cataracts in humans and other impacts, such as crop damage. Ozone also affects the Earth's radiation balance and, in particular, ozone depletion in the lower stratosphere (LS) exerts an important climate forcing. While most long-lived ozone-depleting substances (ODSs, e.g. chlorofluorocarbons, CFCs) are now controlled by the United Nations Montreal Protocol and their abundances are slowly declining, there remains significant uncertainty surrounding the rate of ozone layer recovery. Although signs of recovery have been detected in the upper stratosphere and the Antarctic, this is not the case for the lower stratosphere at middle and low latitudes. In fact, contrary to expectations, ozone in this extrapolar lower stratosphere has continued to decrease (by up to 5% since 1998). The reason(s) for this are not known, but suggested causes include changes in atmospheric dynamics or the increasing abundance of short-lived reactive iodine and chlorine species. We will investigate the causes of this ongoing depletion using comprehensive modelling studies and new targeted observations of the short-lived chlorine substances in the lower stratosphere. While the Montreal Protocol has controlled the production of long-lived ODSs, this is not the case for halogenated very short-lived substances (VSLS, lifetimes <6 months), based on the belief that they would not be abundant or persistent enough to have an impact. Recent observations suggest otherwise, with notable increases in the atmospheric abundance of several gases (CH2Cl2, CHCl3), due largely to growth in emissions from Asia. A major US aircraft campaign based in Japan in summer 2021 will provide important new information on how these emissions of short-lived species reach the stratosphere via the Asian Summer Monsoon (ASM). UEA will supplement the ACCLIP campaign by making targeted surface observations in Taiwan and Malaysia which will help to constrain chlorine emissions. The observations will be combined with detailed and comprehensive 3-D modelling studies at Leeds and Lancaster, who have world-leading expertise and tools for the study of atmospheric chlorine and iodine. The modelling will use an off-line chemical transport model (CTM), ideal for interpreting observations, and a coupled chemistry-climate model (CCM) which is needed to study chemical-dynamical feedbacks and for future projections. Novel observations on how gases are affected by gravitational separation will be used to test the modelled descriptions of variations in atmospheric circulation. The CTM will also be used in an 'inverse' mode to trace back the observations of anthropogenic VSLS to their geographical source regions. The models will be used to quantify the flux of short-lived chlorine and iodine species to the stratosphere and to determine their impact on lower stratospheric ozone trends. The impact of dynamical variability will be quantified using the CTM and the drivers of this determined using the CCM. The model results will be analysed using the same statistical models used to derive the decreasing trend in ozone from observations, including the Dynamical Linear Model (DLM). Overall, the results of the model experiments will be synthesised into an understanding of the ongoing decrease in lower stratospheric ozone. This information will then be used to make improved future projections of how ozone will evolve, which will feed through to the policy-making process (Montreal Protocol) with the collaboration of expert partners. The results of the project will provide important information for future international assessments e.g. WMO/UNEP and IPCC reports.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.