Powered by OpenAIRE graph

Industrial Systems and Control (United Kingdom)

Industrial Systems and Control (United Kingdom)

2 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/I009310/1
    Funder Contribution: 352,598 GBP

    The field of autonomous vehicle control (AVC) is a rapidly growing one which promises improved performance, fuel economy, emission levels, comfort and safety.Application of conventional control methods can generate adequate results under restricted circumstances,but have high design and computational costs and are fragile under real environmental changes (winds, proximity of other vehicles etc).There is therefore a pressing need for alternative approaches to AVC.One particularly promising alternative is to break the task into a set of sub-tasks,each valid over a restricted range of conditions, and to switch between them when required.Dr Hussain's group in Stirling has been developing a novel framework for such'modular learning controllers'over the last few years.The problem of selecting from amongst a set of actions or behaviours is also a central problem for animals.There is growing evidence that a set of central brain nuclei -the basal ganglia- are used by all vertebrates to help solve this problem.Research in Prof Gurney's lab has,over the last decade,been developing computational models of how the basal ganglia support behavioural selection.Thus,we believe that the basal ganglia act as a central 'selector' or 'switch' in all vertebrate brains,in that they examine requests for behaviour and allow the most urgent or salient requests to be selected for behavioural expression Given the similarity between the two problems' domains of AVC and action selection in animals, this project aims to leverage new results from psychology and neurobiology (discovered in Prof Gurney's lab) and apply them to the AVC controllers under development in Dr Hussain's group.One aspect of action selection which appears particularly promising in this respect has to do with there being two general modes of behavioural selection.To see this,consider the following scenarios.First,imagine making tea soon after getting out of bed in the morning in your own kitchen.You probably know exactly what to do without having to consciously be aware of it--the location of the tea,milk,sugar,kettle and water-tap are all well learned, as is the motor actions required to interact with the objects in these locations.Introspection after the event leads us to use terms such as;`I did it in my sleep' or `I was on auto-pilot'.Now consider doing the same task if you are staying at a friend's house for the first time.A completely different strategy appears to be used.Thus,we have to be alert, explore, and use high level cognitive knowledge that we hope generalises well (for example,we hope the tea will be in a cupboard near the sink, not in the living room)These two modes of control are well recognised in the psychological literature as automatic and controlled or executive processing respectively.There is also growing neurobiological evidence for the existence of different control regimes, supported by different brain systems.In addition, the new AVC systems developed at Stirling have two major components:a high level 'supervisory' controller and a set of basic (but adaptable) controllers that direct the actual vehicle behaviour.We believe the similarities with the biological notions of executive and automatic control are highly indicative of a mutually fruitful interaction between neuroscientific and control theoretic domains in this regard.Thus, while our general aim is to exploit a range of similarities between systems in control engineering and the animal brain, we will focus specifically on the concepts of automatised and controlled (or executive) processing and how they might map onto modular AVC solutions of the kind described above.The outcome should be a new generation real-time AVC controller, more directly inspired by the biological ideas. We will work with our industrial partners (Industrial Systems Control and SciSys) to evaluate the benefits of these novel controllers within the context of regular road driving and planetary rover vehicles.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L016834/1
    Funder Contribution: 5,784,700 GBP

    Robots will revolutionise the world's economy and society over the next twenty years, working for us, beside us and interacting with us. The UK urgently needs graduates with the technical skills and industry awareness to create an innovation pipeline from academic research to global markets. Key application areas include manufacturing, assistive and medical robots, offshore energy, environmental monitoring, search and rescue, defence, and support for the aging population. The robotics and autonomous systems area has been highlighted by the UK Government in 2013 as one the 8 Great Technologies that underpin the UK's Industrial Strategy for jobs and growth. The essential challenge can be characterised as how to obtain successful INTERACTIONS. Robots must interact physically with environments, requiring compliant manipulation, active sensing, world modelling and planning. Robots must interact with each other, making collaborative decisions between multiple, decentralised, heterogeneous robotic systems to achieve complex tasks. Robots must interact with people in smart spaces, taking into account human perception mechanisms, shared control, affective computing and natural multi-modal interfaces.Robots must introspect for condition monitoring, prognostics and health management, and long term persistent autonomy including validation and verification. Finally, success in all these interactions depend on engineering enablers, including architectural system design, novel embodiment, micro and nano-sensors, and embedded multi-core computing. The Edinburgh alliance in Robotics and Autonomous Systems (EDU-RAS) provides an ideal environment for a Centre for Doctoral Training (CDT) to meet these needs. Heriot Watt University and the University of Edinburgh combine internationally leading science with an outstanding track record of exploitation, and world class infrastructure enhanced by a recent £7.2M EPSRC plus industry capital equipment award (ROBOTARIUM). A critical mass of experienced supervisors cover the underpinning disciplines crucial to autonomous interaction, including robot learning, field robotics, anthropomorphic & bio-inspired designs, human robot interaction, embedded control and sensing systems, multi-agent decision making and planning, and multimodal interaction. The CDT will enable student-centred collaboration across topic boundaries, seeking new research synergies as well as developing and fielding complete robotic or autonomous systems. A CDT will create cohort of students able to support each other in making novel connections between problems and methods; with sufficient shared understanding to communicate easily, but able to draw on each other's different, developing, areas of cutting-edge expertise. The CDT will draw on a well-established program in postgraduate training to create an innovative four year PhD, with taught courses on the underpinning theory and state of the art and research training closely linked to career relevant skills in creativity, ethics and innovation. The proposed centre will have a strong participative industrial presence; thirty two user partners have committed to £9M (£2.4M direct, £6.6M in kind) support; and to involvement including Membership of External Advisory Board to direct and govern the program, scoping particular projects around specific interests, co-funding of PhD studentships, access to equipment and software, co-supervision of students, student placements, contribution to MSc taught programs, support for student robot competition entries including prize money, and industry lead training on business skills. Our vision for the Centre is as a major international force that can make a generational leap in the training of innovation-ready postgraduates who are experienced in deployment of robotic and autonomous systems in the real world.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.