Kitware (United States)
Kitware (United States)
2 Projects, page 1 of 1
assignment_turned_in Project2018 - 2022Partners:Kitware (United States), BAE Systems (Sweden), BAE Systems (United Kingdom), Oak Ridge National Laboratory, Arup Group (United Kingdom) +24 partnersKitware (United States),BAE Systems (Sweden),BAE Systems (United Kingdom),Oak Ridge National Laboratory,Arup Group (United Kingdom),Imperial College London,Massachusetts Institute of Technology,MBDA UK Ltd,MTU Aero Engines AG,Arup Group Ltd,ORNL,MBDA (United Kingdom),SU,Kitware Inc.,Massachusetts Institute of Technology,Zenotech,Pointwise, Inc.,Stanford University,Stanford University,Pointwise (United States),Arup Group,Nvidia (United States),BAE Systems (UK),Massachusetts Institute of Technology,MTU Aero Engines (Germany),National Aeronautics and Space Administration,nVIDIA,NASA,Zenotech (United Kingdom)Funder: UK Research and Innovation Project Code: EP/R030340/1Funder Contribution: 1,080,910 GBPThis is an extension of the Fellowship: 'Developing Software for High-Order Simulation of Transient Compressible Flow Phenomena: Application to Design of Unmanned Aerial Vehicles' - EP/K027379/1. Over the past decades, computer simulations of fluid flow have emerged as an important tool for design of complex systems across a range of sectors. It is apparent, however, that for a range of flow problem current generation software is not fit for purpose. Newer software is required, that can make effective use of current and future computing platforms, to perform highly accurate so called 'scale-resolving' simulations of unsteady flow phenomena over complex geometric configurations. Such capability would lead to design of more efficient and capable technology across a range of sectors, including aerospace, defense, architecture, automotive, and green energy. Current activities under award EP/K027379/1 have led to development of PyFR (www.pyfr.org), a new software that can effectively leverage capabilities of massively-parallel computing platforms, with a view to undertaking hitherto intractable simulations of unsteady airflow over complex Unmanned Aerial Vehicle (UAV) configurations. The proposed Fellowship extension will address a range of outstanding issues currently blocking wider industrial adoption of PyFR, taking it further "Towards Industry", as well as addressing a range of issues that will block exploitation of PyFR on next-generation exascale supercomputers, taking it further "Towards Exascale". The proposed Fellowship extension will also look to expand the application space of PyFR beyond just UAVs to a range of sectors, and includes test cases involving flow over turbine blades, missiles, buildings, and submarines. The research program will be lead by Dr. Peter Vincent, a Reader in the department of Aeronautics at Imperial College. It will be undertaken in collaboration with various industrial partners including MTU Aeroengines, MBDA, Arup, BAE Systems Submarines, BAE Systems MAI, NASA Glenn, Nasa Langley, NVIDIA, Pointwise, Kitware, Zenotech, and Oak Ridge National Lab, and with various academic partners including Stanford University, and the Massachusetts Institute of Technology. This assembled team of project partners, comprising a selection of the world's leading companies and elite research institutions, will ensure the project successfully delivers its objectives.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7316a83d52f01a2150a459d7104aa3a4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::7316a83d52f01a2150a459d7104aa3a4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2023Partners:Microsoft (United States), Intel Corporation (UK) Ltd, Software Carpentry, National Air Traffic Services (United Kingdom), RNLI +106 partnersMicrosoft (United States),Intel Corporation (UK) Ltd,Software Carpentry,National Air Traffic Services (United Kingdom),RNLI,Lloyd's Register Foundation,Cancer Research UK,Kitware (United States),BT Innovate,JGU,HONEYWELL INTERNATIONAL INC,XYRATEX,BAE Systems (UK),Software Sustainability Institute,BAE Systems (United Kingdom),MBDA UK Ltd,BAE Systems (Sweden),Procter and Gamble UK (to be replaced),BT Innovate,Airbus (United Kingdom),Imperial Cancer Research Fund,University of Southampton,Vanderbilt University,University of Oxford,Boeing United Kingdom Limited,General Electric (Germany),Simula Research Laboratory,Agency for Science Technology-A Star,National Institute of Standards and Technology,Rolls-Royce (United Kingdom),Lloyd's Register of Shipping (Naval),University of California, Berkeley,IBM (United Kingdom),iVec,EADS Airbus,Chemring Technology Solutions (United Kingdom),Qinetiq (United Kingdom),IBM (United Kingdom),RMRL,Airbus Group Limited (UK),NAG,IBM UNITED KINGDOM LIMITED,Smith Institute,Rolls-Royce (United Kingdom),Simula Research Laboratory,National Grid PLC,Helen Wills Neuroscience Institute,Energy Exemplar Pty Ltd,Associated British Ports (United Kingdom),Kitware Inc.,Smith Institute,CANCER RESEARCH UK,Helen Wills Neuroscience Institute,Nvidia (United States),ABP Marine Env Research Ltd (AMPmer),Sandia National Laboratories California,National Grid (United Kingdom),nVIDIA,CIC nanoGUNE Consolider,Agency for Science, Technology and Research,Lloyds Banking Group,Simul8 Corporation,iSys,Maritime Research Institute Netherlands,Microsoft Research (United Kingdom),The Welding Institute,University of Southampton,Intel UK,CIC nanoGUNE,Boeing (United Kingdom),The Welding Institute,Vanderbilt University,McLaren Honda (United Kingdom),Seagate (United States),HGST,Microsoft Research,Lloyds Banking Group (United Kingdom),Qioptiq Ltd,BT Group (United Kingdom),STFC - Laboratories,Science and Technology Facilities Council,[no title available],ABP Marine Env Research Ltd (AMPmer),iVec,MBDA (United Kingdom),University of Rostock,Maritime Research Inst Netherlands MARIN,General Electric,MICROSOFT RESEARCH LIMITED,SIM8,University of Rostock,McLaren Honda (United Kingdom),Numerical Algorithms Group Ltd (NAG) UK,NIST (Nat. Inst of Standards and Technol,Software Sustainability Institute,STFC - LABORATORIES,EADS Airbus (to be replaced),EADS UK Ltd,iSys,NATS Ltd,Honeywell (United States),Procter & Gamble (United Kingdom),Seagate Technology,Sandia National Laboratories,Procter and Gamble UK,Hitachi Global Storage Technologies (United States),Numerical Algorithms Group (United Kingdom),Software Carpentry,Royal National Lifeboat Institution,Seagate (United Kingdom),Rolls-Royce Plc (UK)Funder: UK Research and Innovation Project Code: EP/L015382/1Funder Contribution: 3,992,780 GBPThe achievements of modern research and their rapid progress from theory to application are increasingly underpinned by computation. Computational approaches are often hailed as a new third pillar of science - in addition to empirical and theoretical work. While its breadth makes computation almost as ubiquitous as mathematics as a key tool in science and engineering, it is a much younger discipline and stands to benefit enormously from building increased capacity and increased efforts towards integration, standardization, and professionalism. The development of new ideas and techniques in computing is extremely rapid, the progress enabled by these breakthroughs is enormous, and their impact on society is substantial: modern technologies ranging from the Airbus 380, MRI scans and smartphone CPUs could not have been developed without computer simulation; progress on major scientific questions from climate change to astronomy are driven by the results from computational models; major investment decisions are underwritten by computational modelling. Furthermore, simulation modelling is emerging as a key tool within domains experiencing a data revolution such as biomedicine and finance. This progress has been enabled through the rapid increase of computational power, and was based in the past on an increased rate at which computing instructions in the processor can be carried out. However, this clock rate cannot be increased much further and in recent computational architectures (such as GPU, Intel Phi) additional computational power is now provided through having (of the order of) hundreds of computational cores in the same unit. This opens up potential for new order of magnitude performance improvements but requires additional specialist training in parallel programming and computational methods to be able to tap into and exploit this opportunity. Computational advances are enabled by new hardware, and innovations in algorithms, numerical methods and simulation techniques, and application of best practice in scientific computational modelling. The most effective progress and highest impact can be obtained by combining, linking and simultaneously exploiting step changes in hardware, software, methods and skills. However, good computational science training is scarce, especially at post-graduate level. The Centre for Doctoral Training in Next Generation Computational Modelling will develop 55+ graduate students to address this skills gap. Trained as future leaders in Computational Modelling, they will form the core of a community of computational modellers crossing disciplinary boundaries, constantly working to transfer the latest computational advances to related fields. By tackling cutting-edge research from fields such as Computational Engineering, Advanced Materials, Autonomous Systems and Health, whilst communicating their advances and working together with a world-leading group of academic and industrial computational modellers, the students will be perfectly equipped to drive advanced computing over the coming decades.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::340ffb132f64b2a285355a80ba765113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::340ffb132f64b2a285355a80ba765113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu