Powered by OpenAIRE graph

Nuclear Decommissioning Authority

Nuclear Decommissioning Authority

22 Projects, page 1 of 5
  • Funder: UK Research and Innovation Project Code: EP/R026084/1
    Funder Contribution: 12,807,900 GBP

    The nuclear industry has some of the most extreme environments in the world, with radiation levels and other hazards frequently restricting human access to facilities. Even when human entry is possible, the risks can be significant and very low levels of productivity. To date, robotic systems have had limited impact on the nuclear industry, but it is clear that they offer considerable opportunities for improved productivity and significantly reduced human risk. The nuclear industry has a vast array of highly complex and diverse challenges that span the entire industry: decommissioning and waste management, Plant Life Extension (PLEX), Nuclear New Build (NNB), small modular reactors (SMRs) and fusion. Whilst the challenges across the nuclear industry are varied, they share many similarities that relate to the extreme conditions that are present. Vitally these similarities also translate across into other environments, such as space, oil and gas and mining, all of which, for example, have challenges associated with radiation (high energy cosmic rays in space and the presence of naturally occurring radioactive materials (NORM) in mining and oil and gas). Major hazards associated with the nuclear industry include radiation; storage media (for example water, air, vacuum); lack of utilities (such as lighting, power or communications); restricted access; unstructured environments. These hazards mean that some challenges are currently intractable in the absence of solutions that will rely on future capabilities in Robotics and Artificial Intelligence (RAI). Reliable robotic systems are not just essential for future operations in the nuclear industry, but they also offer the potential to transform the industry globally. In decommissioning, robots will be required to characterise facilities (e.g. map dose rates, generate topographical maps and identify materials), inspect vessels and infrastructure, move, manipulate, cut, sort and segregate waste and assist operations staff. To support the life extension of existing nuclear power plants, robotic systems will be required to inspect and assess the integrity and condition of equipment and facilities and might even be used to implement urgent repairs in hard to reach areas of the plant. Similar systems will be required in NNB, fusion reactors and SMRs. Furthermore, it is essential that past mistakes in the design of nuclear facilities, which makes the deployment of robotic systems highly challenging, do not perpetuate into future builds. Even newly constructed facilities such as CERN, which now has many areas that are inaccessible to humans because of high radioactive dose rates, has been designed for human, rather than robotic intervention. Another major challenge that RAIN will grapple with is the use of digital technologies within the nuclear sector. Virtual and Augmented Reality, AI and machine learning have arrived but the nuclear sector is poorly positioned to understand and use these rapidly emerging technologies. RAIN will deliver the necessary step changes in fundamental robotics science and establish the pathways to impact that will enable the creation of a research and innovation ecosystem with the capability to lead the world in nuclear robotics. While our centre of gravity is around nuclear we have a keen focus on applications and exploitation in a much wider range of challenging environments.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/P01366X/1
    Funder Contribution: 4,650,280 GBP

    The vision for this Programme is to deliver the step changes in Robotics and Autonomous Systems (RAS) capability that are necessary to overcome crucial challenges facing the nuclear industry in the coming decades. The RAS challenges faced in the nuclear industry are extremely demanding and complex. Many nuclear installations, particularly the legacy facilities, present highly unstructured and uncertain environments. Additionally, these "high consequence" environments may contain radiological, chemical, thermal and other hazards. To minimise risks of contamination and radiological shine paths, many nuclear facilities have very small access ports (150 mm - 250 mm diameter), which prevent large robotic systems being deployed. Smaller robots have inherent limitations with power, sensing, communications and processing power, which remain unsolved. Thick concrete walls mean that communication bandwidths may be severely limited, necessitating increased levels of autonomy. Grasping and manipulation challenges, and the associated computer vision and perception challenges are profound; a huge variety of legacy waste materials must be sorted, segregated, and often also disrupted (cut or sheared). Some materials, such as plastic sheeting, contaminated suits/gloves/respirators, ropes, chains can be deformed and often present as chaotic self-occluding piles. Even known rigid objects (e.g. fuel rod casings) may present as partially visible or fragmented. Trivial tasks are complicated by the fact that the material properties of the waste, the dose rates and the layout of the facility within which the waste is stored may all be uncertain. It is therefore vital that any robotic solution be capable of robustly responding to uncertainties. The problems are compounded further by contamination risks, which typically mean that once deployed, human interaction with the robot will be limited at best, autonomy and fault tolerance are therefore important. The need for RAS in the nuclear industry is spread across the entire fuel cycle: reactor operations; new build reactors; decommissioning and waste storage and this Programme will address generic problems across all these areas. It is anticipated that the research will have a significant impact on many other areas of robotics: space, sub-sea, mining, bomb-disposal and health care, for example and cross sector initiatives will be pursued to ensure that there is a two-way transfer of knowledge and technology between these sectors, which have many challenges in common with the nuclear industry. The work will build on the robotics and nuclear engineering expertise available within the three academic organisations, who are each involved in cutting-edge, internationally leading research in relevant areas. This expertise will be complemented by the industrial and technology transfer experience and expertise of the National Nuclear Laboratory who have a proven track record of successfully delivering innovation in to the nuclear industry. The partners in the Programme will work jointly to develop new RAS related technologies (hardware and software), with delivery of nuclear focused demonstrators that will illustrate the successful outcomes of the Programme. Thus we will provide the nuclear supply chain and end-users with the confidence to apply RAS in the nuclear sector. To develop RAS technology that is suitable for the nuclear industry, it is essential that the partners work closely with the nuclear supply chain. To achieve this, the Programme will be based in west Cumbria, the centre of much of the UK's nuclear industry. Working with researchers at the home campuses of the academic institutions, the Programme will create a clear pipeline that propels early stage research from TRL 1 through to industrially relevant technology at TRL 3/4. Utilising the established mechanisms already available in west Cumbria, this technology can then be taken through to TRL 9 and commercial deployment.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S032959/1
    Funder Contribution: 386,163 GBP

    Organic ion exchange resins are utilised in many different areas of the civil nuclear fuel cycle, from uranium ore concentration and refinement and chemical control of coolant water composition in light water reactors and spent fuel storage ponds, to decontamination of radioactive element-containing effluents arising from fuel reprocessing and nuclear decommissioning operations. These materials are effective "sponges" for a wide range of radioactive elements, hence their widespread use. The UK has stockpiled approximately 600 m3 of spent (i.e., used) ion exchange resins (SIERs), which require disposal, and continues to produce between 2.5 to 13 m3 per year. The disposal of SIERs is problematic; there are several key issues, which include: 1. The 14C inventory of the materials. This isotope has a half life of 5,730 years and is incorporated as 14CO32- and H14CO3-, which, if allowed to enter the environment are extremely mobile and biologically available. Release of 14C gas in a disposal environment provides a rapid 14C migration pathway to the biosphere; 2. The degradation of SIERs in a disposal environment through radioactive decay processes produces organic complexant molecules, which may facilitate rapid transport of radioactive elements from SIERs to the biosphere; 3. The degradation of SIERs in a storage environment may also yield chemically toxic gases such as benzene, phenol and ammonia, which make storage extremely problematic. These issues require the SIERs to be treated so as to meet waste acceptance criteria for disposal. This is typically achieved by destruction using thermal or chemical processes. In this proposal, we aim to develop a promising chemical treatment route for the destruction of SIERs, known as wet oxidation. Wet oxidation has been successfully trialled elsewhere for the destruction of non-radioactive surrogates for SIERs, however, the specific methods previously utilised do not give rise to by-product residues that are amenable to immobilisation in a material suitable for disposal in the UK. We propose two novel approaches to wet oxidation processes that will not only generate by-products more suitable for immobilisation, but that also have a greater destruction efficiency than those previously trialled. Furthermore, we will develop and optimise tailored cement, ceramic and glass waste forms for the immobilisation of SIER degradation. We will provide a robust scientific underpinning of the chemical speciation and local distribution of radionuclides in SIERs and the immobilisation matrices we develop, and understand their behaviour in disposal environments, to support the safe and timely disposal of SIER wastes. A significant novelty of this research is the verification of our new treatment and immobilisation methods for SIERs using real radioactive materials. After optimisation of the processes described above using inactive SIERs, we will apply them to real radioactive SIER from the UK decommissioning programme. If successful, this work will be a significant step towards demonstrating an effective treatment option for the resin, allowing early site termination of a significant hazard.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L015927/1
    Funder Contribution: 4,159,160 GBP

    Risk is the potential of experiencing a loss when a system does not operate as expected due to uncertainties. Its assessment requires the quantification of both the system failure potential and the multi-faceted failure consequences, which affect further systems. Modern industries (including the engineering and financial sectors) require increasingly large and complex models to quantify risks that are not confined to single disciplines but cross into possibly several other areas. Disasters such as hurricane Katrina, the Fukushima nuclear incident and the global financial crisis show how failures in technical and management systems cause consequences and further failures in technological, environmental, financial, and social systems, which are all inter-related. This requires a comprehensive multi-disciplinary understanding of all aspects of uncertainty and risk and measures for risk management, reduction, control and mitigation as well as skills in applying the necessary mathematical, modelling and computational tools for risk oriented decision-making. This complexity has to be considered in very early planning stages, for example, for the realisation of green energy or nuclear power concepts and systems, where benefits and risks have to be considered from various angles. The involved parties include engineering and energy companies, banks, insurance and re-insurance companies, state and local governments, environmental agencies, the society both locally and globally, construction companies, service and maintenance industries, emergency services, etc. The CDT is focussed on training a new generation of highly-skilled graduates in this particular area of engineering, mathematics and the environmental sciences based at the Liverpool Institute for Risk and Uncertainty. New challenges will be addressed using emerging probabilistic technologies together with generalised uncertainty models, simulation techniques, algorithms and large-scale computing power. Skills required will be centred in the application of mathematics in areas of engineering, economics, financial mathematics, and psychology/social science, to reflect the complexity and inter-relationship of real world systems. The CDT addresses these needs with multi-disciplinary training and skills development on a common mathematical platform with associated computational tools tailored to user requirements. The centre reflects this concept with three major components: (1) Development and enhancement of mathematical and computational skills; (2) Customisation and implementation of models, tools and techniques according to user requirements; and (3) Industrial and overseas university placements to ensure industrial and academic impact of the research. This will develop graduates with solid mathematical skills applied on a systems level, who can translate numerical results into languages of engineering and other disciplines to influence end-users including policy makers. Existing technologies for the quantification and management of uncertainties and risks have yet to achieve their significant potential benefit for industry. Industrial implementation is presently held back because of a lack of multidisciplinary training and application. The Centre addresses this problem directly to realise a significant step forward, producing a culture change in quantification and management of risk and uncertainty technically as well as educationally through the cohort approach to PGR training.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S023844/1
    Funder Contribution: 6,596,590 GBP

    The EPSRC Centre for Doctoral Training (CDT) in Nuclear Energy Futures aims to train a new generation of international leaders, at PhD level, in nuclear energy technology. It is made up of Imperial College London (lead), Bristol University, Cambridge University, Open University and Bangor University. These institutions are some of the UK's leading institutions for research and teaching in nuclear power. The CDTs key focus is around nuclear fission i.e. that is the method of producing energy by splitting the atom, which currently accounts for 11% of the world's electricity and 20% of the UK's electricity, whilst producing very low levels of carbon emissions (at levels the same as renewable energy, such as wind). The CDT whilst focused on fission energy technologies will also have PhD projects related to fusion nuclear energy and projects needed or related to nuclear energy such as seismic studies, robotics, data analytics, environmental studies, policy and law. The CDT's major focus is related to the New Nuclear Build activities at Hinkley Point, Somerset and the Anglesey site in north Wales, where EDF Energy and Horizon, respectively, are building new fission power plants that will produce around 3.2 and 2.7 GWe of nuclear power (about 13% of the UK current electricity demand). The CDT will provide the skills needed for research related to these plants and potential future industry leaders, for nuclear decommissioning of current plants (due to come off-line in the next decade) and to lead the UK in new and innovative technologies for nuclear waste disposal and new reactor technologies such as small modular reactors (SMRs). The need for new talented PhD level people is very high as many of the UK's current technical experts were recruited in the 1970s and 80s and many are near retirement and skills sector studies have shown many more are needed for the new build projects. The CDT will champion teaching innovation and will produce a series of bespoke courses that can be delivered via on-line media by the very best experts in the field from across the CDT covering areas such as the nuclear fuel cycle; waste and decommissioning; small modular reactors; policy, economics and regulation; thermal hydraulics and reactor physics as well as leading on responsible research and innovation in the sector. The CDT is supported by a wide range of nuclear companies and stakeholders. These include those involved in the new build process in the UK such as EDF Energy, Hitachi-GE, Horizon and Rolls-Royce, the latter of which are developing a UK advanced modular reactor design. International nuclear stakeholders from countries such as the USA, UAE, Australia and France will support the student development and the CDT programme. The students in the CDT will cover a very broad training in all aspects of nuclear power and importantly for this sector will engage in both media training activities and public outreach to make nuclear power more open to the public, government and scientists and engineers outside of the discipline.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.