Maastricht University, MERLN - Institute for Technology-Inspired Regenerative Medicine
Maastricht University, MERLN - Institute for Technology-Inspired Regenerative Medicine
13 Projects, page 1 of 3
assignment_turned_in ProjectFrom 2025Partners:Maastricht University, MERLN - Institute for Technology-Inspired Regenerative MedicineMaastricht University, MERLN - Institute for Technology-Inspired Regenerative MedicineFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: OCENW.XS25.1.125Corneal endothelial cells are essential for keeping the cornea clear and healthy. However, in traditional lab cultures, they don’t behave as they do in the eye, making it hard to prepare these cells for transplants or study their function. This project will create a fluidic chip that mimics the curvature, flow and pressure conditions of the eye, providing a better environment for these cells to grow and function. This innovative approach can help reduce reliance on animal testing while improving treatments for eye diseases and understanding corneal cell behaviour under realistic conditions.
more_vert assignment_turned_in Project2017 - 2023Partners:Maastricht University, Maastricht University, Maastricht University, Faculty of Science and Engineering, Aachen-Maastricht Institute for Biobased Materials (AMIBM), Technische Universiteit Eindhoven - Eindhoven University of Technology, Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Scheikundige Technologie - Department of Chemical Engineering and Chemistry, Polymeer Technologie +12 partnersMaastricht University,Maastricht University,Maastricht University, Faculty of Science and Engineering, Aachen-Maastricht Institute for Biobased Materials (AMIBM),Technische Universiteit Eindhoven - Eindhoven University of Technology,Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Scheikundige Technologie - Department of Chemical Engineering and Chemistry, Polymeer Technologie,Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Scheikundige Technologie - Department of Chemical Engineering and Chemistry, Polymer Technology,Maastricht University, MERLN - Institute for Technology-Inspired Regenerative Medicine, Complex Tissue Regeneration (CTR),Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Scheikundige Technologie - Department of Chemical Engineering and Chemistry,Xilloc Medical B.V.,Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Scheikundige Technologie - Department of Chemical Engineering and Chemistry, Macromoleculaire en Organische Chemie,TNO Eindhoven, Materials Solutions,Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Scheikundige Technologie - Department of Chemical Engineering and Chemistry, Kunststoftechnologie,Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Scheikundige Technologie - Department of Chemical Engineering and Chemistry, Stimuli-responsive Functional Materials & Devices,Technische Universiteit Eindhoven - Eindhoven University of Technology,TNO Eindhoven,Xilloc Medical B.V.,Maastricht University, MERLN - Institute for Technology-Inspired Regenerative MedicineFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: 731.016.2023D printen maakt het mogelijk om complexe gepersonaliseerde producten zoals prothesen en implantaten te maken rechtstreeks vanuit een 3D scan. Om dit soort toepassingen mogelijk te maken is het belangrijk dat beschikbare materialen de juiste mechanische en biochemische eigenschappen hebben. Dit project richt zich op de ontwikkeling van nieuwe polymere materialen en hydrogelen op basis van dynamische chemische bindingen die ervoor zorgen dat de materialen reageren op verschillende omstandigheden tijdens de verwerking, waardoor optimale eigenschappen van het 3D geprinte product kunnen worden verkregen. Daarnaast kunnen ook eindproducten worden verkregen met schakelbare eigenschappen. Het project is een samenwerking tussen de Technische Universiteit Eindhoven, de Universiteit Maastricht, DSM, Xilloc en Brightlands Materials Center (BMC), een publiek-privaat onderzoekscentrum opgericht door TNO en de provincie Limburg, waarin topwetenschappers en specialisten uit de industrie samenwerken aan duurzame technologische innovaties op het gebied van polymere materialen.
more_vert assignment_turned_in ProjectFrom 2025Partners:Maastricht University, MERLN - Institute for Technology-Inspired Regenerative MedicineMaastricht University, MERLN - Institute for Technology-Inspired Regenerative MedicineFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: OCENW.XS25.2.215Implants often trigger inflammatory responses that current materials can only partially counteract. Our research introduces materials that influence energy production in immune cells. These innovative materials release metabolic inhibitors when inflammatory cells degrade the material — the stronger the inflammatory response, the more inhibitors are released. This self-regulating system not only suppresses inflammatory cells but also transforms them into cells that promote tissue repair, shifting the implant–body interaction from conflict to coordinated healing. With this concept, we lay the foundation for a new generation of implants that actively support tissue regeneration.
more_vert assignment_turned_in ProjectFrom 2025Partners:Maastricht University, MERLN - Institute for Technology-Inspired Regenerative MedicineMaastricht University, MERLN - Institute for Technology-Inspired Regenerative MedicineFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: OCENW.XS24.3.159The long-term performance of cellular therapies against type 1 diabetes is hindered by the suboptimal cell delivery strategies that employ non-biological biomaterials, such as synthetic plastic. Once implanted with cells, such non-biological components trigger undesired foreign body response (FBR), leading to inflammation and ultimately graft failure. In project ALIVE, we propose to develop a fully biological cell delivery system using Cell Sheet Technology that would integrate with the body without triggering harmful FBR and thus maintain the survival and function of the transplanted insulin-producing beta cells for a long time.
more_vert assignment_turned_in Project2017 - 9999Partners:Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Biomedische Technologie - Department of Biomedical Engineering, Biomechanics & Tissue Engineering, Hubrecht Institute, Hubrecht Institute, Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Biomedische Technologie - Department of Biomedical Engineering, Biomedical Chemistry, Universitair Medisch Centrum Utrecht +11 partnersTechnische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Biomedische Technologie - Department of Biomedical Engineering, Biomechanics & Tissue Engineering,Hubrecht Institute,Hubrecht Institute,Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Biomedische Technologie - Department of Biomedical Engineering, Biomedical Chemistry,Universitair Medisch Centrum Utrecht,Technische Universiteit Eindhoven - Eindhoven University of Technology,Universiteit Utrecht,Maastricht University, MERLN - Institute for Technology-Inspired Regenerative Medicine,Maastricht University,Universiteit Utrecht,Universitair Medisch Centrum Utrecht, Nefrologie en Vasculaire Geneeskunde,Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Biomedische Technologie - Department of Biomedical Engineering, Institute for Complex Molecular Systems (ICMS),Maastricht University,Universitair Medisch Centrum Utrecht,Technische Universiteit Eindhoven - Eindhoven University of Technology,Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Biologie, Hubrecht LaboratoriumFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: 024.003.013Regenerative medicine (RM) reinforces the regenerative power of a person’s own body to heal damaged or diseased tissues and organs, like bones, the heart, and kidneys. In the future, RM promises to cure what are now chronic diseases – but to get there, a concentrated effort to achieve major scientific breakthroughs is needed. The Center for Materials-Driven Regeneration (MDR) brings together the best Dutch scientists from various research fields to force these much-needed breakthroughs.
more_vert
chevron_left - 1
- 2
- 3
chevron_right
