FEV EUROPE GMBH
FEV EUROPE GMBH
37 Projects, page 1 of 8
Open Access Mandate for Publications and Research data assignment_turned_in Project2021 - 2025Partners:POLITO, IN EXTENSO INNOVATION CROISSANCE, Institut de France, GARRETT MOTION FRANCE SAS, FEV EUROPE GMBH +3 partnersPOLITO,IN EXTENSO INNOVATION CROISSANCE,Institut de France,GARRETT MOTION FRANCE SAS,FEV EUROPE GMBH,MARELLI EUROPE SPA,CRF,JMFunder: European Commission Project Code: 101006841Overall Budget: 5,939,720 EURFunder Contribution: 4,997,320 EURPHOENICE aims at developing a C SUV-class plug-in hybrid (P1/P4) vehicle demonstrator whose fuel consumption and pollutant emissions will be jointly minimized for real world driving conditions. This development will require the optimisation of a highly efficient gasoline engine, relying on a dual dilution combustion approach with excess air and EGR, synergizing an innovative in-cylinder charge motion with high pressure injection, novel ignition technologies, and an electrified turbocharger particularly relevant for hybrid architectures. The potential of alternative fuels produced by P2X processes will also be considered. To achieve the targeted near-zero emissions in transient conditions specific to PHEV in real driving conditions, the demonstrator vehicle will be equipped with a complete and dedicated after-treatment system including an electrically heated catalyst, a SCR and a GPF for abating NOx, particle number down to 10 nm, and non-regulated gaseous emissions. The vehicle overall efficiency will be increased with an exhaust waste heat recovery system for generating an additional electric power contribution for cabin heating or cooling, or for reducing the switch-on time of the internal combustion engine in cold conditions, thereby limiting the engine-out pollutant emissions such as particles. Virtual methods will be employed to reduce the calibration time of all the vehicle sub-systems. The vehicle control will use all the flexibility of the hybrid architecture and sub-systems to lower in real time the driving emissions and fuel consumption. Technologies developed in PHOENICE will achieve a TRL 7 paying a specific attention to cost, industrialization, and to the use opportunity for various vehicle classes so as to maximize the economic and environmental impacts. This project will support the European automobile industry in the medium term and speed up the transition towards a more environmentally friendly mobility in terms of air quality and GHG emissions.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::705fe9b57a30cf5b628c14040adaccb2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::705fe9b57a30cf5b628c14040adaccb2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2009 - 2012Partners:UOWM, Polytechnic University of Milan, ČVUT, FEV EUROPE GMBH, SIEMENS PLM +3 partnersUOWM,Polytechnic University of Milan,ČVUT,FEV EUROPE GMBH,SIEMENS PLM,AVL,Institut de France,RICARDO CONSULTING ENGINEERS LIMITEDFunder: European Commission Project Code: 233615All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::bf18a3924a0acd2ab4c5e1736db3d529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::bf18a3924a0acd2ab4c5e1736db3d529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2009 - 2011Partners:CNR, Daimler (Germany), AVL, E4TECH SARL, RWTH +4 partnersCNR,Daimler (Germany),AVL,E4TECH SARL,RWTH,FEV EUROPE GMBH,WUT,CRF,EMREFunder: European Commission Project Code: 218512All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::e43d49a50c08819b4f9c1b3aa8c244d0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::e43d49a50c08819b4f9c1b3aa8c244d0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2023 - 2026Partners:RWTH, LETI, EFESTO, LOMARTOV SL, Sonaca (Belgium) +5 partnersRWTH,LETI,EFESTO,LOMARTOV SL,Sonaca (Belgium),PLASTIC OMNIUM CLEAN ENERGY SYSTEM RESEARCH,LEITAT,Avesta,FEV EUROPE GMBH,CRFFunder: European Commission Project Code: 101103696Overall Budget: 4,995,930 EURFunder Contribution: 4,995,930 EURIn order to boost the transition to a climate neutral transport sector, VERSAPRINT will bring innovations to the battery system to tackle safety issues, enhance performances as well as decrease cost and environmental impact. The VERSAPRINT technical solutions will be achieved mainly by 2D/3D printing directly on battery components and will operate from the heart of the battery system (i) providing an efficient cell thermal regulation in order to reduce risk of Thermal Runaway (TR) and increase density and lifetime; (ii) significantly improving the system thermal and safety management thanks to in operando sensoring; (iii) adding thermal and safety-oriented functionalities on busbars; (iv) allowing easy and safe dismantling and re-manufacturing; (v) lowering the casing’s weight, without losing its capability to contain TR and while ensuring good recycling rate; (vi) providing an advanced thermal/fire response; and (vii) controlling the exhaust gases released during a TR by cooling and evacuating them safely. VERSAPRINT will also implement a Decision Tool in order to choose the most optimised configuration for a given end application and will provide a validation at TRL5 (i) at module level with two module prototypes (for automotive and aeronautics) as well as one virtual module prototype (for waterway transport); (ii) at system level through simulation for all these applications. Other applications such as bus, non-road mobile machinery and stationary storage will be explored as well, through simulation. VERSAPRINT aims to reach the cost and performances targeted in Batteries Europe 2030 KPIs, while increasing module density by 5% and significantly improving the battery system fire resistance and safety (no fire outside module during TR). Sustainability will be assessed at all development stages. The multi-disciplinary consortium gathers 3 RTO/academic partners and 7 industrial partners (4 IND and 3 SMEs), and is completed by 12 industrial Advisory Board members.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::82a494d105b14b404424c0324319763c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::82a494d105b14b404424c0324319763c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2021 - 2024Partners:MHPS, CNRS, SDU, ASAHI KASEI EUROPE GMBH, RWTH +6 partnersMHPS,CNRS,SDU,ASAHI KASEI EUROPE GMBH,RWTH,FEV EUROPE GMBH,UDL,CO2 VALUE EUROPE AISBL,SkyNRG,RWE,TNOFunder: European Commission Project Code: 101006799Overall Budget: 5,340,540 EURFunder Contribution: 4,998,790 EURTAKE-OFF is an industrially driven project that will be a game-changer in the cost effecTAKE-OFF is an industrially driven project that will be a game-changer in the cost effective production of sustainable aviation fuel (SAF) from CO2 and hydrogen. Due to their strict criteria in terms of physical and chemical properties, the aviation sector is highly limited in the number of options for meeting sustainability goals. The unique TAKE-OFF technology is based on conversion of CO2 and H2 to SAF via ethylene as intermediate. The industrial partners SkyNRG (SAF developer) and FEV (power systems) will team up with ground-breaking research groups at CNRS (catalyst development), TNO (reactor and process design), and RWTH (engine out emissions reduction) to deliver a highly innovative process which produces SAF at lower costs, higher energy efficiency and higher carbon efficiency to the crude jet fuel product than the current benchmark Fischer-Tropsch process. The project will further leverage the investments in the ALIGN-CCUS (ERA-NET ACT) project with the involvement of key industrial players in the development of synthetic sustainable fuels. TAKE-OFF’s key industrial players are RWE (power producer), MHPSE (energy technology provider), and AKEU (electrolysis systems), allowing the demonstration of the full technology chain, utilizing industrial captured CO2 and electrolytically produced hydrogen. The demonstration activities will provide valuable data to the University of Southern Denmark for comprehensive technical and economic and environmental analyses with an outlook on Chemical Factories of the Future. The consortium is further supplemented by the leading industry association, CO2 Value Europe, for communication and exploitation. The achievement of the project objectives will contribute directly to the UN Sustainable Development Goals, European Green Deal, and the Renewable Energy Directive II, where sustainable aviation fuels are receiving increased attention.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::10a9cfebcfe8a41855ab5f28b93bb761&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::10a9cfebcfe8a41855ab5f28b93bb761&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right