Powered by OpenAIRE graph

ALFA LAVAL TECHNOLOGIES AB

Country: Sweden

ALFA LAVAL TECHNOLOGIES AB

6 Projects, page 1 of 2
  • Funder: European Commission Project Code: 101070666
    Overall Budget: 2,948,250 EURFunder Contribution: 2,948,250 EUR

    The 4th Industrial Revolution/Industry 4.0 has enabled reduction of production costs, improved consistency of product quality and enabled mass customisation by merging the physical and digital worlds. The transition is still ongoing - Industry 4.0 is a general-purpose technology, adding value across all industrial sectors. However, the perception of Industry 4.0 at a human level has not all been positive. It has been plagued by fear of job cuts and in some sectors completely replacing the human workforce. Automation projects have often failed due to omitting the critical skilled human elements in business success with unintended consequences including reduced customer satisfaction, poorer product quality and lower process efficiency. Automation alone clearly cannot be a source of sustained competitive advantage. I5.0 will address the balance between humans and technology, focussing on the collaborative relationship between skilled workers and automation. The intent is reinstate skilled craftsmanship at the centre of production processes where people add unique value and competitive advantage, augmented by intelligent, data-driven technology emerging from Industry 4.0. In the Up-Skill project, we will address the implications of Industry 5.0, in particular the relationship between automation, skilled work and organisational systems. Our research will establish how the relationship between automation and human input plays out in a range of industrial settings, creating comparative case studies to capture effective implementation strategies. We will address under-explored strategic spaces in production - where automation adds value to skilled and artisanal work, and where further automation risks undermining product value. This research will identify the shifting organisational characteristics that are needed to ensure technology advancements are implemented within companies while ensuring sustainable, added value for man, machine, and organisation.

    more_vert
  • Funder: European Commission Project Code: 101131516
    Funder Contribution: 4,991,960 EUR

    The FlexRICAN project brings together three landmark ESFRI infrastructures that have, or will have, when in operation different usages of energy: the European Spallation Source ERIC (ESS) in Sweden, the Extreme Light Infrastructure ERIC (ELI), with two running facilities (Czech Republic and Hungary) and the European Magnetic Field Laboratory AISBL (EMFL), with facilities in Grenoble and Nijmegen for DC fields and Dresden and Toulouse for pulsed fields (CNRS, SRU, HZDR). The RIs and partners involved in FlexRICAN will unite their strength to optimize their ongoing (and/or future) energy projects. They will demonstrate that the RIs, as electro-intensive actors, are at the good scale to develop a global energetic approach delivering services to the European electrical grid through optimized energy flexibility and to local heating networks by developing Waste Heat Recovery projects. Developing renewable energy capacity production and managing these developments in an integrated way thanks to energy oriented modelization integrating RIs user communities and the new stakeholders appears like a promising solution. Through the development of a multi-energy approach integrating academic knowledge and two key actors of the energy sector, Alfa Laval (AL) and Energy Pool (EP), FlexRICAN will propose new technologies and solutions to increase resource use efficiency and reduce environmental impacts of European Research Infrastructures (RIs). The project will focus on assessing and validating the implementation of new solutions and technologies at the three ESFRI infrastructures involved. Prototypes and solutions will be developed and tested to identify solutions at the real scale of the infrastructures. It will contribute to quantify energy services and carbon print gain the RIs can performed throughout their full life cycle in order to increase the long-term sustainability of European Research Infrastructures and to contribute to the resilience of the energetical European system.

    more_vert
  • Funder: European Commission Project Code: 101101521
    Overall Budget: 4,130,780 EURFunder Contribution: 3,998,030 EUR

    AMON project aims at developing a novel system for the utilization and conversion of ammonia into electric power at high efficiency using a solid oxide fuel cell. High temperature electrolysers have demonstrated in several activities the capacity to outreach high performances in lab scale prototypes and validation tests. The project will deal with the design of the basic components of the system including the fuel cell, the ammonia cracker, the ammonia burner and an anode gas recirculation, the engineering of the whole Balance of Plants, and the validation of the compliance with ammonia use for all the specific parts and components. For the development of the solid oxide fuel cell, a G8X cell from SOLIDpower will be utilized, first validated in a laboratory at the level of single cells, for electrochemical properties, degradation and post mortem analysis, at the level of single repeating units for the validation of interconnects and sealing components, and at the level of stacks and stack modules. An overall Ammonia fuel cell system will be engineered and manufactured to be tested in a relevant environment in a port area. The final system will be in the size of 8 kW stack module, with an ammonia cracker and a heat management system. It will aim at an overall electrical efficiency in the range of 70%. AMON will be supported alongside the engineering by horizontal strategic support on critical and open issues involving use of ammonia with fuel cells, such as safety assessment, on techno-econmic analysis, on modelling at a multiscale and multiphysic levels, to consolidate, confirm and direct the engineering of the technology. Despite the small pilot demostration scale, AMON will propose a scaled engineering for a system suitable to be applied in end uses such as ports, interports, maritime environment, besides autonomous power systems. AMON will promote the use of ammonia as a hydrogen carrier, to enhance the flexibility of the energy system.

    more_vert
  • Funder: European Commission Project Code: 814888
    Overall Budget: 4,993,080 EURFunder Contribution: 4,993,080 EUR

    The overall goal of the TRI-HP project is the development and demonstration of flexible energy-efficient and affordable trigeneration systems. The systems will be based on electrically driven natural refrigerant heat pumps coupled with renewable electricity generators (PV), using cold (ice slurry), heat and electricity storages to provide heating, cooling and electricity to multi-family residential buildings with a self-consumed renewable share of 80%. TRI-HP systems will include advanced controls, managing electricity, heat and cold in a way that optimizes the performance of the system and increases its reliability via failure self-detection. The flexibility will be achieved by allowing for three heat sources: solar (with ice/water as storage medium), ground and ambient air. The innovations proposed will reduce the system cost by at least 10-15% compared to current heat pump technologies with equivalent energetic performances. Two natural refrigerants with very low global warming potential, propane and carbon dioxide, will be used as working fluids for adapted system architectures that specifically target the different heating and cooling demands across Europe. The newly-developed systems will find application in both new and refurbished multi-family buildings, allowing to cover the major part of Europe’s building stock. The new systems reduce GHG emissions by 75% compared to gas boilers and air chillers. The TRI-HP project will provide the most appropriate knowledge and technical solutions in order to cope with stakeholder’s needs, building demand characteristics, local regulations and social barriers. Two system concepts will be developed for two different combinations of heat sources, i) dual ground/air source and ii) solar with ice-slurry as intermediate storage. These two concepts combined with the two heat pump types developed (CO2 and propane) will lead to three complete systems (CO2-ice, propane-ice and propane-dual) that will be tested in the laboratory.

    more_vert
  • Funder: European Commission Project Code: 764706
    Overall Budget: 5,904,430 EURFunder Contribution: 5,904,430 EUR

    Natural gas fired Combined Cycle (CC) power plants are currently the backbone of EU electrical grid, providing most of regulation services necessary to increase the share of non-programmable renewable sources into the electrical grid. As a consequence, Original Equipment Manufacturers (OEMs) and Utilities are investigating new strategies and technologies for power flexibility. On the other hand, existing cogenerative CCs are usually constrained by thermal user demand, hence can provide limited services to the grid. At the same time, CHP plants are highly promoted for their high rate of energy efficiency (> 90%) and combined with district heating network are a pillar of the EU energy strategy. To un-tap such unexploited reserve of flexibility, and to further enhance turn-down ratio and power ramp capabilities of power oriented CCs, this project proposes the demonstration of an innovative concept based on the coupling of a fast-cycling highly efficient heat pump (HP) with CCs. The integrated system features thermal storage and advanced control concept for smart scheduling. The HP will include an innovative expander to increase the overall efficiency of the HP. In such an integrated concept, the following advantages are obtained: - the HP is controlled to modulate power in order to cope with the CC primary reserve market constraints; - the high temperature heat can be exploited in the district heating network, when available; low temperature cooling power can be used for gas turbine inlet cooling or for steam condenser cooling, thus reducing the water consumption; - in both options, the original CC operational envelope is significantly expanded and additional power flexibility is achieved. In general, the CC integration with a HP and a cold/hot thermal storage brings to a reduction of the Minimum Environmental Load (MEL) and to an increase in power ramp rates, while enabling power augmentation at full load and increasing electrical grid resilience and flexibility.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.