Powered by OpenAIRE graph

High Force Research Ltd

High Force Research Ltd

3 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/S022791/1
    Funder Contribution: 7,571,970 GBP

    Molecular sciences, such as chemistry, biophysics, molecular biology and protein science, are vital to innovations in medicine and the discovery of new medicines and diagnostics. As well as making a crucial contribution to health and society, industries in this field provide an essential component to the economy and contribute hugely to employment figures, currently generating nearly 500,000 jobs nationally. To enable and facilitate future economic growth in this area, the CDT will provide a cohort of researchers who have training in both aspects of this interface who will be equipped to become the future innovators and leaders in their field. All projects will be based in both molecular and medical sciences and will focus on unmet medical needs, such as understanding of disease biology, identification of new therapeutic targets, and new approaches to discovery and development of novel therapies. Specific problems will be identified by researchers within the CDT, industrial partners, stakeholders and the CDT students. The research will be structured around three theme areas: Biology of Disease, Molecule and Assay Design and Structural Biology and Computation. The CDT brings together leading researchers with a proven track record across these areas and who have pioneered recent advances in the field, such as multiple approved cancer treatments. Their combined expertise will provide supervision and mentorship to the student cohort who will work on projects that span these research themes and bring their contributions to bear on the medical problems in question. The student cohort approach will allow teams of researchers to work together on joint projects with common goals. Projects will be proposed between academics, industrial partners and students with priority given to those with industrial relevance. The programme of research and training across the disciplines will equip graduates of the CDT with an unprecedented background of knowledge and skills across the disciplines. The programme of research and training across the disciplines will be supplemented by training and hands-on experiences of entrepreneurship, responsible innovation and project management. Taken together this will make graduates of the CDT highly desirable to employers, equip them with the skills they need to envisage and implement future innovations in the area and allow them to become the leaders of tomorrow. A structured and highly experienced management group, consisting of a director, co-directors, theme leads and training coordinators will oversee the execution of the CDT with the full involvement of industry partners and students. This will ensure delivery of the cohort training programme and joint events as well as being accountable for the process of selection of projects and student recruitment. The management team has an established track record of delivery of research and training in the field across industry and academia as well as scientific leadership and network training coordination. The CDT will be delivered as a single, fully integrated programme between Newcastle and Durham Universities, bringing together highly complementary skills and backgrounds from the two institutions. The seamless delivery of the programme across the two institutions is enabled by their unique connectivity with efficient transport links and established regional networks. The concept and structure of the CDT has been developed in conjunction with the industrial partners across the pharmaceutical, biotech and contract research industries, who have given vital steer on the desirability and training need for a CDT in this area as well as to the nature of the theme areas and focus of research. EPSRC funding for the CDT will be supplemented by substantial contributions from both Universities with resources and studentship funding and from industry partners who will provide training, in kind contribution and placements as well as additional studentships.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/S023828/1
    Funder Contribution: 6,520,760 GBP

    The OxICFM CDT, centred in Oxford University's Department of Chemistry, and involving eight key industrial stakeholders, two STFC national facilities, and faculty from Oxford Materials, Physics and Engineering seeks to address a UK-wide need for the training of doctoral scientists in the synthesis of inorganic materials relevant to the future prosperity of the manufacturing sector. Chemical synthesis is a key enabling scientific discipline that allows humanity to maintain and improve its quality of life. Within the UK, the EPSRC's own data show that the chemical/chemistry-using sectors contributed a total of £258B in value-added in 2007 (21% of UK GDP), and supported over 6 million UK jobs. Manufacturing processes and future materials are highlighted as key technologies in the recent UK Industrial Strategy green paper, and the long-term skills demand for scientists to develop new materials and nanotechnology was highlighted in the UK Government's 2013 Foresight report. The EPSRC's prioritisation in the area is highlighted by (among other things) the recent Future Manufacturing Hubs call. Future advances in societally critical areas such as petrochemical utilisation, battery technologies, semiconductors, smart materials, catalysts for chemical manufacturing, carbon capture, solar conversion and water supply/agro-chemicals are all underpinned by the ability to design and make chemical compounds and materials - to order - with custom designed properties. As an example, many technological developments in the last 30 years would not have been possible without Goodenough's fundamental work (carried out in Oxford) leading to the development of cathode materials for rechargeable lithium batteries - and ultimately to a $30B global industry currently growing at 10% per annum. We will exploit the uniquely broad range of excellence, innovation and multi-disciplinarity offered at Oxford by a critical mass of world-class researchers in this area (40+ faculty), to deliver a rigorous, challenging and relevant CDT programme in what is an under-represented area of graduate training. We believe that such a programme is not only timely and complementary to existing EPSRC CDT provision, but will address the national need for resilience, growth and innovation in key manufacturing sectors. The 'art and craft' of inorganic synthesis as applied to manufacturing is necessarily extremely diverse. OxICFM will exploit a cohort model allied to training incorporating faculty-, industry- and peer-led components, to deliver scientists (i) with a broad spectrum training across the interface between inorganic synthesis and manufacturing, and (ii) with in-depth expertise in one specific stream (molecular, nano-scale or extended materials). This model is driven by a strong end-user pull, including a desire expressed on numerous occasions by industrial partners, to recruit doctoral graduates who not only have depth of expertise in one area, but who can also apply themselves to a broad spectrum of inter-disciplinary challenges in manufacturing related synthesis with greater effectiveness than 'standard' doctoral graduates. As expressed by our SME partners and highlighted in Econic's letter of support: '(we do) not need lots more chemistry (post)graduates, we needed better prepared ones who could understand and adapt to working in industry more readily. I see a clear connection with the CDT intent and our own, and other scaling chemical businesses, needs.' With this clear vision in mind, a central component of our approach is the integration of industry-led training from both larger partner companies and SMEs in order to promote a holistic understanding of cross-scale issues relating to different business models. We stress that our aim is not to add significantly to total post-graduate numbers in Oxford Chemistry, but rather to provide a different training package to those currently available.

    more_vert
  • Funder: UK Research and Innovation Project Code: BB/P004806/1
    Funder Contribution: 201,822 GBP

    The number of people in the UK suffering from diseases that accelerate the deterioration of the brain has shown a dramatic increase in recent years, with our ageing population and increasing life expectancy; however, there is a desperate lack of effective drugs to treat these diseases, which include Alzheimer's and Parkinson's. The retinoic acid receptor is a promising protective target for these diseases; this neuroprotective action is activated when the receptor binds a small lipid called a retinoid. We have discovered a new means for designing and identifying retinoids that switch on the receptor in a way that best maximises its protective action. We will develop new retinoids for their capacity to treat the damaging changes associated with Alzheimer's. We will form a company which will further develop and evaluate these compounds, to the stage that they can be licensed to pharma and taken into clinical trials, for the treatment of Alzheimer's and other neurodegenerative diseases.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.