Exxon Mobil Upstream Research Co
Exxon Mobil Upstream Research Co
4 Projects, page 1 of 1
assignment_turned_in Project2008 - 2011Partners:Centre of Applied Costal Ecology, ExxonMobil, University of Brighton, National University of the Littoral, University of Brighton +3 partnersCentre of Applied Costal Ecology,ExxonMobil,University of Brighton,National University of the Littoral,University of Brighton,UNL,Centre of Applied Costal Ecology,Exxon Mobil Upstream Research CoFunder: UK Research and Innovation Project Code: NE/E016022/1Funder Contribution: 226,597 GBPDespite the fact that the World's 10 largest rivers drain almost one fifth of the global continental land area and deliver about one third of the terrestrial sediment supplied to oceans, we know relatively little about how such large rivers function. This is both surprising and problematic given that they impact directly on a wide range of environmental, social and economic issues (e.g. flooding, bank erosion, loss of land and infrastructure collapse) and ultimately create deposits that host some of the World's most lucrative mineral and fossil fuel reserves. Present understanding of large rivers is based almost entirely upon the findings of studies conducted in small channels. However, recent research gives us good reason to expect that transferring this knowledge to large rivers may not be straight-forward. Consequently, there is an urgent need to develop an improved quantitative understanding of the interactions between river processes, channel morphology and subsurface sedimentology in the World's largest rivers. Addressing this knowledge gap represents a significant challenge because it involves developing methods that can be used to investigate process-product relationships that operate across a wide range of time and space scales (from decimetres/minutes up to kilometres/millennia). This research will bring together a multi-disciplinary team of leading UK and overseas researchers in order to achieve this goal. In this project we will investigate one of the World's largest rivers, the ParanĂ¡-Paraguay in Argentina to understand: (1) what controls water and sediment movement and river channel changes over time; and (2) what this means for the formation and preservation of river sedimentary deposits. We will address these issues by implementing a research strategy that involves three key elements. First, we will use state-of-the-art field instrumentation to map river bed morphology and its evolution through time, and measure the three-dimensional patterns of water and sediment movement around and over channel bars. Second, we will take advantage of recent developments in Ground Penetrating Radar technology to map the three-dimensional sedimentary structure of braid-bar deposits, both within the current river and in formerly active areas that have been abandoned over the past few thousand years. Third, we will develop new numerical modelling approaches to investigate and quantify the interactions between water and sediment transport processes, bar formation, evolution of channel morphology and the subsurface sedimentology of deposits. The latter will involve combining, for the first time, Computational Fluid Dynamics models that provide a sophisticated representation of the physics governing water and sediment movement, with innovative Reduced-Complexity models capable of simulating how these processes interact to determine channel evolution and deposit sedimentology over periods of centuries to millennia. The result of this work will be the World's first comprehensive database on how the morphology of a large river changes through time, obtained concurrently with data on what drives those changes and what this means for the formation of sedimentary deposits. This will allow us to develop new models of how these rivers work and to use these models to address practical questions concerning large river resources and their management.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c610dccfbf4e5d0befad377fe72ea3f2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::c610dccfbf4e5d0befad377fe72ea3f2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2008 - 2011Partners:Total E&P UK PLC, Shell (Netherlands), STATOIL PETROLEUM, Advantica Technologies Ltd, Imperial College London +33 partnersTotal E&P UK PLC,Shell (Netherlands),STATOIL PETROLEUM,Advantica Technologies Ltd,Imperial College London,Statoil,ExxonMobil,KBC Advanced Technologies (United Kingdom),PDVSA,B P International Ltd,Total E&P UK PLC,Institute of Oil Fuels and Lubricants,ConocoPhillips UK Limited,NOVATICA TECHNOLOGIES LTD,Scanpower Petroleum Technology AS,Chevron Energy Technology Company,Chevron (United States),Norsk Hydro (Norway),PETROBRAS Research and Development Cente,B P Exploration Co Ltd,PETROBRAS Research and Development Cente,ConocoPhillips UK Ltd,Petrobras (Brazil),Equinor (Norway),Institut de France,CD-adapco,ENI Exploration & Production,CD-adapco (United Kingdom),Norsk Hydro As,Petroleum of Venezuela (Venezuela),Sintef Energi As,SHELL GLOBAL SOLUTIONS INTERNATIONAL B.V.,SINTEF AS,Scandpower Petroleum Technology AS,Exxon Mobil Upstream Research Co,CD-adapco,Eni (Italy),FEESA LimitedFunder: UK Research and Innovation Project Code: EP/F017448/1Funder Contribution: 235,485 GBPThis proposal addresses the vital issue of prediction of multiphase flows in large diameter risers in off-shore hydrocarbon recovery. The riser is essentially a vertical or near-vertical pipe connecting the sea-bed collection pipe network (the flowlines) to a sea-surface installation, typically a floating receiving and processing vessel. In the early years of oil and gas exploration and production, the oil and gas companies selected the largest and most accessible off-shore fields to develop first. In these systems, the risers were relatively short and had modest diameters. However, as these fields are being depleted, the oil and gas companies are being forced to look further afield for replacement reserves capable of being developed economically. This, then, has led to increased interest in deeper waters, and harsher and more remote environments, most notably in the Gulf of Mexico, the Brazilian Campos basin, West of Shetlands and the Angolan Aptian basin. Many of the major deepwater developments are located in water depths exceeding 1km (e.g. Elf's Girassol at 1300m or Petrobras' Roncador at 1500-2000m). To transport the produced fluids in such systems with the available pressure driving forces has led naturally to the specification of risers of much greater diameter (typically 300 mm) than those used previously (typically 75 mm). Investments in such systems have been, and will continue to be, huge (around $35 billion up to 2005) with the riser systems accounting for around 20% of the costs. Prediction of the performance of the multiphase flow riser systems is of vital importance but, very unfortunately, available methods for such prediction are of doubtful validity. The main reason for this is that the available data and methods have been based on measurements on smaller diameter tubes (typically 25-75 mm) and on the interpretation of these measurements in terms of the flow patterns occurring in such tubes. These flow patterns are typically bubble, slug, churn and annular flows. The limited amount of data available shows that the flow patterns in larger tubes may be quite different and that, within a given flow pattern, the detailed phenomena may also be different. For instance, there are reasons to believe that slug flow of the normal type (with liquid slugs separated by Taylor bubbles of classical shape) may not exist in large pipes. Methods to predict such flows with confidence will be improved significantly by means of an integrated programme of work at three universities (Nottingham, Cranfield and Imperial College) which will involve both larger scale investigations as well as investigations into specific phenomena at a more intimate scale together with modelling studies. Large facilities at Nottingham and Cranfield will be used for experiments in which the phase distribution about the pipe cross section will be measured using novel instrumentation which can handle a range of fluids. The Cranfield tests will be at a very large diameter (250 mm) but will be confined to vertical, air/water studies with special emphasis on large bubbles behaviour. In contrast those at Nottingham will employ a slightly smaller pipe diameter (125 mm) but will use newly built facilities in which a variety of fluids can be employed to vary physical properties systematically and can utilise vertical and slightly inclined test pipes. The work to be carried out at Imperial College will be experimental and numerical. The former will focus on examining the spatio-temporal evolution of waves in churn and annular flows in annulus geometries; the latter will use interface-tracking methods to perform simulations of bubbles in two-phase flow and will also focus on the development of a computer code capable of predicting reliably the flow behaviour in large diameter pipes. This code will use as input the information distilled from the other work-packages regarding the various flow regimes along the pipe.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3faab7db1a132f38cce7ddaaef387252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3faab7db1a132f38cce7ddaaef387252&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2008 - 2011Partners:Statoil, PETROBRAS Research and Development Cente, KBC Advanced Technologies (United Kingdom), NTU, Norsk Hydro As +34 partnersStatoil,PETROBRAS Research and Development Cente,KBC Advanced Technologies (United Kingdom),NTU,Norsk Hydro As,ConocoPhillips UK Ltd,SINTEF AS,Scandpower Petroleum Technology AS,Petrobras (Brazil),Equinor (Norway),Institut de France,Total E&P UK PLC,Petroleum of Venezuela (Venezuela),Sintef Energi As,NOVATICA TECHNOLOGIES LTD,CD-adapco,SHELL GLOBAL SOLUTIONS INTERNATIONAL B.V.,Institute of Oil Fuels and Lubricants,PETROBRAS Research and Development Cente,ENI Exploration & Production,Shell (Netherlands),STATOIL PETROLEUM,Advantica Technologies Ltd,ExxonMobil,University of Nottingham,CD-adapco (United Kingdom),Scanpower Petroleum Technology AS,Chevron Energy Technology Company,Chevron (United States),Norsk Hydro (Norway),B P Exploration Co Ltd,Exxon Mobil Upstream Research Co,CD-adapco,Eni (Italy),FEESA Limited,PDVSA,B P International Ltd,Total E&P UK PLC,ConocoPhillips UK LimitedFunder: UK Research and Innovation Project Code: EP/F016050/1Funder Contribution: 519,910 GBPThis proposal addresses the vital issue of prediction of multiphase flows in large diameter risers in off-shore hydrocarbon recovery. The riser is essentially a vertical or near-vertical pipe connecting the sea-bed collection pipe network (the flowlines) to a sea-surface installation, typically a floating receiving and processing vessel. In the early years of oil and gas exploration and production, the oil and gas companies selected the largest and most accessible off-shore fields to develop first. In these systems, the risers were relatively short and had modest diameters. However, as these fields are being depleted, the oil and gas companies are being forced to look further afield for replacement reserves capable of being developed economically. This, then, has led to increased interest in deeper waters, and harsher and more remote environments, most notably in the Gulf of Mexico, the Brazilian Campos basin, West of Shetlands and the Angolan Aptian basin. Many of the major deepwater developments are located in water depths exceeding 1km (e.g. Elf's Girassol at 1300m or Petrobras' Roncador at 1500-2000m). To transport the produced fluids in such systems with the available pressure driving forces has led naturally to the specification of risers of much greater diameter (typically 300 mm) than those used previously (typically 75 mm). Investments in such systems have been, and will continue to be, huge (around $35 billion up to 2005) with the riser systems accounting for around 20% of the costs. Prediction of the performance of the multiphase flow riser systems is of vital importance but, very unfortunately, available methods for such prediction are of doubtful validity. The main reason for this is that the available data and methods have been based on measurements on smaller diameter tubes (typically 25-75 mm) and on the interpretation of these measurements in terms of the flow patterns occurring in such tubes. These flow patterns are typically bubble, slug, churn and annular flows. The limited amount of data available shows that the flow patterns in larger tubes may be quite different and that, within a given flow pattern, the detailed phenomena may also be different. For instance, there are reasons to believe that slug flow of the normal type (with liquid slugs separated by Taylor bubbles of classical shape) may not exist in large pipes. Methods to predict such flows with confidence will be improved significantly by means of an integrated programme of work at three universities (Nottingham, Cranfield and Imperial College) which will involve both larger scale investigations as well as investigations into specific phenomena at a more intimate scale together with modelling studies. Large facilities at Nottingham and Cranfield will be used for experiments in which the phase distribution about the pipe cross section will be measured using novel instrumentation which can handle a range of fluids. The Cranfield tests will be at a very large diameter (250 mm) but will be confined to vertical, air/water studies with special emphasis on large bubbles behaviour. In contrast those at Nottingham will employ a slightly smaller pipe diameter (125 mm) but will use newly built facilities in which a variety of fluids can be employed to vary physical properties systematically and can utilise vertical and slightly inclined test pipes. The work to be carried out at Imperial College will be experimental and numerical. The former will focus on examining the spatio-temporal evolution of waves in churn and annular flows in annulus geometries; the latter will use interface-tracking methods to perform simulations of bubbles in two-phase flow and will also focus on the development of a computer code capable of predicting reliably the flow behaviour in large diameter pipes. This code will use as input the information distilled from the other work-packages regarding the various flow regimes along the pipe.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::165af55c00e071cbc371e22f5c79ed8c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::165af55c00e071cbc371e22f5c79ed8c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2008 - 2011Partners:Norsk Hydro As, Petroleum of Venezuela (Venezuela), Sintef Energi As, SHELL GLOBAL SOLUTIONS INTERNATIONAL B.V., SINTEF AS +35 partnersNorsk Hydro As,Petroleum of Venezuela (Venezuela),Sintef Energi As,SHELL GLOBAL SOLUTIONS INTERNATIONAL B.V.,SINTEF AS,Scandpower Petroleum Technology AS,Total E&P UK PLC,PETROBRAS Research and Development Cente,Institute of Oil Fuels and Lubricants,Scanpower Petroleum Technology AS,Chevron Energy Technology Company,Chevron (United States),KBC Advanced Technologies (United Kingdom),Norsk Hydro (Norway),Petrobras (Brazil),Equinor (Norway),Institut de France,CRANFIELD UNIVERSITY,B P Exploration Co Ltd,NOVATICA TECHNOLOGIES LTD,PDVSA,B P International Ltd,Total E&P UK PLC,ConocoPhillips UK Limited,Shell (Netherlands),ConocoPhillips UK Ltd,STATOIL PETROLEUM,Advantica Technologies Ltd,ExxonMobil,Cranfield University,ENI Exploration & Production,CD-adapco (United Kingdom),Statoil,PETROBRAS Research and Development Cente,CD-adapco,[no title available],Exxon Mobil Upstream Research Co,CD-adapco,Eni (Italy),FEESA LimitedFunder: UK Research and Innovation Project Code: EP/F016565/1Funder Contribution: 214,858 GBPThis proposal addresses the vital issue of prediction of multiphase flows in large diameter risers in off-shore hydrocarbon recovery. The riser is essentially a vertical or near-vertical pipe connecting the sea-bed collection pipe network (the flowlines) to a sea-surface installation, typically a floating receiving and processing vessel. In the early years of oil and gas exploration and production, the oil and gas companies selected the largest and most accessible off-shore fields to develop first. In these systems, the risers were relatively short and had modest diameters. However, as these fields are being depleted, the oil and gas companies are being forced to look further afield for replacement reserves capable of being developed economically. This, then, has led to increased interest in deeper waters, and harsher and more remote environments, most notably in the Gulf of Mexico, the Brazilian Campos basin, West of Shetlands and the Angolan Aptian basin. Many of the major deepwater developments are located in water depths exceeding 1km (e.g. Elf's Girassol at 1300m or Petrobras' Roncador at 1500-2000m). To transport the produced fluids in such systems with the available pressure driving forces has led naturally to the specification of risers of much greater diameter (typically 300 mm) than those used previously (typically 75 mm). Investments in such systems have been, and will continue to be, huge (around $35 billion up to 2005) with the riser systems accounting for around 20% of the costs. Prediction of the performance of the multiphase flow riser systems is of vital importance but, very unfortunately, available methods for such prediction are of doubtful validity. The main reason for this is that the available data and methods have been based on measurements on smaller diameter tubes (typically 25-75 mm) and on the interpretation of these measurements in terms of the flow patterns occurring in such tubes. These flow patterns are typically bubble, slug, churn and annular flows. The limited amount of data available shows that the flow patterns in larger tubes may be quite different and that, within a given flow pattern, the detailed phenomena may also be different. For instance, there are reasons to believe that slug flow of the normal type (with liquid slugs separated by Taylor bubbles of classical shape) may not exist in large pipes. Methods to predict such flows with confidence will be improved significantly by means of an integrated programme of work at three universities (Nottingham, Cranfield and Imperial College) which will involve both larger scale investigations as well as investigations into specific phenomena at a more intimate scale together with modelling studies. Large facilities at Nottingham and Cranfield will be used for experiments in which the phase distribution about the pipe cross section will be measured using novel instrumentation which can handle a range of fluids. The Cranfield tests will be at a very large diameter (250 mm) but will be confined to vertical, air/water studies with special emphasis on large bubbles behaviour. In contrast those at Nottingham will employ a slightly smaller pipe diameter (125 mm) but will use newly built facilities in which a variety of fluids can be employed to vary physical properties systematically and can utilise vertical and slightly inclined test pipes. The work to be carried out at Imperial College will be experimental and numerical. The former will focus on examining the spatio-temporal evolution of waves in churn and annular flows in annulus geometries; the latter will use interface-tracking methods to perform simulations of bubbles in two-phase flow and will also focus on the development of a computer code capable of predicting reliably the flow behaviour in large diameter pipes. This code will use as input the information distilled from the other work-packages regarding the various flow regimes along the pipe.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::cc5dc9ad04736dd78ff767026a7b062d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::cc5dc9ad04736dd78ff767026a7b062d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu