Powered by OpenAIRE graph

EDISON SPA

Country: Italy
4 Projects, page 1 of 1
  • Funder: European Commission Project Code: 101101427
    Overall Budget: 4,872,200 EURFunder Contribution: 4,178,520 EUR

    The project aims at moving technological frontiers for low-emission combustion of hydrogen to fuel modern gas turbines at high firing temperatures and pressures, beyond the latest state-of-the-art. This will be achieved whilst maintaining high engine performance, efficiency, fuel and load flexibility, without diluents. At the same time, all emission targets set by the Clean Hydrogen JU Strategic Research and Innovation Agenda (SRIA) will be met. The idea is based on a proprietary combustion technology, designated constant pressure sequential combustion (CPSC) already deployed into the GT36 H-class engine (760 MW in combined cycle). The CPSC concept, based on a unique longitudinally staged combustion system, yields the best fuel flexibility and has the greatest potential to achieve the project target of demonstrating stable and clean combustor operation with concentrations of hydrogen admixed with natural gas, up to 100%, at firing temperatures typical of modern H-Class engines. The new, improved combustor design will be fully retrofittable to existing gas turbines, thereby providing opportunities for refurbishing existing assets. The primary objective is to demonstrate the CPSC technology in engine relevant environment (TRL6) in three steps (70, 90 and 100 vol% H2). In this pursuit, a subset of specific performance data (KPIs) will be met within the project timeline and with the planned resources and allocated budget. The project uses state-of-the-art computational tools, analytical modelling, and diagnostic techniques to investigate static and dynamic flame stabilisation. Testing is performed at world-class laboratories in test campaigns at reduced scale and in full size (at atmospheric and pressurised conditions). In preparation for commercialisation, the project will also develop a roadmap towards deployment of the developed system into operation and demonstration into a power plant environment quantifying the valuable contributions to the EU Green Deal.

    more_vert
  • Funder: European Commission Project Code: 245339
    more_vert
  • Funder: European Commission Project Code: 101084362
    Overall Budget: 4,854,230 EURFunder Contribution: 4,854,230 EUR

    The H-HOPE project addresses the development and demonstration of innovative and sustainable energy harvesting systems capable of recovering hidden hydro energy from existing piping systems, open streams and open channels. This new technology is based on both the use of piezoelectric materials attached to submerged bodies with deforming walls and of electromagnetic regulators absorbing the transverse motion of oscillating bodies inside flows. The power density of the proposed energy harvesters will be significantly improved thanks to the multi-physics design approach and to the innovative adaptive power take-off (PTO) allowing to tune the resonance frequency of the coupled fluid-structure-electrical system and thus increase the flow induced vibrations under lock-in conditions. Eight (8) different case studies representative of actual industrial water facilities and free-flowing streams located across Europe will be used to experimentally test and validate the effectiveness of the technology in adequate and real operating conditions reproduced in laboratories. In parallel, numerical models will be developed and included in a multi-physics design strategy so as to optimize their design whereas an adaptive PTO will be developed and customize on the energy harvesting system so as to maximize the performance even in variable operating conditions. The assessment of the environmental and socio-economic impacts will be used to demonstrate the value of the selected case studies and the sustainability of the proposed technology aimed also at increasing the resilience of the water facilities. In order to extend this knowledge and promote the applications of the H-HOPE technologies to potential prosumers, an open-access and open-source do-it-yourself platform will be set up. As a result, the H-HOPE platform will certainly contribute to reduce the negative effects of the climate change and to reduce the CO2 emissions while increasing the energy independence of the EU.

    more_vert
  • Funder: European Commission Project Code: 773406
    Overall Budget: 27,252,700 EURFunder Contribution: 21,207,900 EUR

    Six TSOs, eleven research partners, together with sixteen industry (manufacturers, solution providers) and market (producers, ESCo) players address, through a holistic approach, the identification and development of flexibilities required to enable the Energy Transition to high share of renewables. This approach captures synergies across needs and sources of flexibilities, such as multiple services from one source, or hybridizing sources, thus resulting in a cost-efficient power system. OSMOSE proposes four TSO-led demonstrations (RTE, REE, TERNA and ELES) aiming at increasing the techno-economic potential of a wide range of flexibility solutions and covering several applications, i.e.: synchronisation of large power systems by multiservice hybrid storage; multiple services provided by the coordinated control of different storage and FACTS devices; multiple services provided by grid devices, large demand-response and RES generation coordinated in a smart management system; cross-border sharing of flexibility sources through a near real-time cross-border energy market. The demonstrations are coordinated with and supported by simulation-based studies which aim (i) to forecast the economically optimal mix of flexibility solutions in long-term energy scenarios (2030 and 2050) and (ii) to build recommendations for improvements of the existing market mechanisms and regulatory frameworks, thus enabling the reliable and sustainable development of flexibility assets by market players in coordination with regulated players. Interoperability and improved TSO/DSO interactions are addressed so as to ease the scaling up and replication of the flexibility solutions. A database is built for the sharing of real-life techno-economic performances of electrochemical storage devices. Activities are planned to prepare a strategy for the exploitation and dissemination of the project’s results, with specific messages for each category of stakeholders of the electricity system.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.