VANGUARD AUTOMATION GMBH
VANGUARD AUTOMATION GMBH
5 Projects, page 1 of 1
Open Access Mandate for Publications assignment_turned_in Project2020 - 2023Partners:EPFL, KIT, VANGUARD AUTOMATION GMBH, LIGENTEC SA, THALES +1 partnersEPFL,KIT,VANGUARD AUTOMATION GMBH,LIGENTEC SA,THALES,CNITFunder: European Commission Project Code: 863322Overall Budget: 3,361,740 EURFunder Contribution: 3,361,740 EURHigh-speed digital signal processing (DSP) has seen tremendous performance increases over the last years, primarily driven by massive parallelization of logic operations in large-scale CMOS circuits. This has led to digital processors that would allow for real-time processing of ultra-broadband signals with analogue bandwidths of hundreds of GHz already today. Acquisition of such signals, however, is still impossible due to limited bandwidth scalability of conventional analogue-to-digital converters (ADC). Within TeraSlice, we will explore and demonstrate concepts that can overcome these limitations by photonically assisted spectral parallelization of ADC interfaces, thereby enabling conversion of waveforms with bandwidths in excess of 300 GHz with the potential for further scalability beyond 1 THz. The TeraSlice approach is disruptive both on a conceptual level and with respect to the underlying devices, comprising low-phase-noise Kerr comb generators and ultra-fast electro-optic modulators. The concept has the potential to disrupt a variety of highly relevant applications with substantial market potential, ranging from radar systems and wireless communications beyond 5G to electron paramagnetic resonance (EPR) spectroscopy. TeraSlice builds upon an interdisciplinary effort of internationally leading academic and industrial partners with highly complementary expertise. The project covers the theoretical base and the associated quantitative system models, the design, implementation, and test of crucial components and subsystems, as well as application demonstrations of the envisaged ADC scheme, for which we will reach out to other scientific fields such as medical diagnostics. Special focus will be on technological concepts for chip-scale integration – a key aspect for any technical application of the scheme. Based on a successful demonstration of the TeraSlice concept, foundation of a start-up is envisaged as a realistic scenario for exploitation of the results.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::c87dc6f577bcd559617c3dd0488a501f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::c87dc6f577bcd559617c3dd0488a501f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2024 - 2028Partners:KIT, IWC PAN, VANGUARD AUTOMATION GMBH, THALES, TopGaN +1 partnersKIT,IWC PAN,VANGUARD AUTOMATION GMBH,THALES,TopGaN,INRIMFunder: European Commission Project Code: 101131069Overall Budget: 2,786,480 EURFunder Contribution: 2,786,480 EURLasers are ubiquitous in science and technology, with applications ranging from optical communications and quantum technologies to metrology and sensing and to life sciences and medical diagnostics. However, most commercially used lasers are still based on legacy optical schemes. These devices are either bulky and expensive limiting product development, or lack the ability to quickly sweep or precisely control the laser wavelength, which is key to many applications. At the same time, the advent of advanced photonic integration platforms such as silicon photonics has opened new perspectives, realized only for exascale data centers in telecommunication wavelengths around 1310 and 1550 nm. AgiLight aims at establishing a new class of integrated lasers that can address the entire wavelength range from the blue (400 nm) to the infrared (2.7 µm). These devices rely on a hybrid integration platform that combines ultra-low-loss silicon nitride photonic circuits with advanced tuning actuators and with III-V gain elements, exploiting highly scalable assembly concepts based on 3D printing. The devices will offer high output powers (> 100 mW), down to Hz-level laser linewidths, and unprecedented frequency agility with nanosecond response times and wideband tunability. Comprising leading European research groups and high-tech start-ups as well as a major industrial player, AgiLight will translate ground-breaking research to rapid technology uptake and tailor laser systems for atomic and molecular physics and optics, distance ranging and sensing using the expertise of end-users. The project covers the theoretical and nanofabrication foundations of the envisaged light sources as well as their implementation and functional demonstration in highly relevant research applications throughout the visible and near-infrared spectrum. AgiLight will lay the foundation for an all-European value chain of a novel class of light sources, covering the III-V and low-loss PICs.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::ea9ad9e2ec564adbc405b43104ad0d7e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::ea9ad9e2ec564adbc405b43104ad0d7e&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2021 - 2025Partners:RIEGL RESEARCH, University of Twente, VANGUARD AUTOMATION GMBH, KEOPSYS INDUSTRIES, THALES +3 partnersRIEGL RESEARCH,University of Twente,VANGUARD AUTOMATION GMBH,KEOPSYS INDUSTRIES,THALES,LIONIX INTERNATIONAL BV,TEMATYS,Sick (Germany)Funder: European Commission Project Code: 101017136Overall Budget: 4,556,780 EURFunder Contribution: 4,556,780 EURMiniaturized, yet highly sensitive and fast LiDAR systems serve market demands for their use on platforms ranging from robots, drones, and autonomous vehicles (cars, trains, boats, etc.) that are mostly used in complex environments. The widespread use of high performance LiDAR tools faces a need for cost and size reduction. A key component of a LiDAR system is the light source. Very few laser light sources exist that provide sufficient performance to achieve the required distance range, distance resolution and velocity accuracy of the emerging applications identified in LiDAR roadmaps. The available sources, namely single mode or multimode laser diodes and fiber lasers, are either very costly, not sufficiently robust or not compact enough. In OPHELLIA, we will investigate advanced materials and integration technologies directed to produce novel PIC building blocks, namely high gain, high output power (booster) amplifiers and on-chip isolators that are not yet available in a PIC format with the required performance. The novel building blocks will be monolithically integrated onto the Si3N4 generic photonic platform to produce high performance laser sources with unprecedented high coherence and high power, which will have a profound impact on the performance of the systems. Advanced packaging will further contribute to a dramatic reduction of the overall cost. To achieve this ambitious goal, OPHELLIA will leverage the expertise of its consortium members, ranging from materials, integration technologies and PIC design to packaging and LiDAR systems integration, which covers the full chain from innovation to the deployment of the technology in a relevant environment. The successful realization of OPHELLIA will not only represent a milestone towards the widespread utilization of LiDAR systems, but the developed building blocks will also have an enormous impact in other emerging application fields such as datacom/telecom, sensing/spectroscopy and quantum technology.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::4e78b2c9e9fdb7ebbc6da5d4ac45d4a6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::4e78b2c9e9fdb7ebbc6da5d4ac45d4a6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2022 - 2025Partners:ETHZ, Alcatel-Lucent (France), VANGUARD AUTOMATION GMBH, THALES, III V Lab +6 partnersETHZ,Alcatel-Lucent (France),VANGUARD AUTOMATION GMBH,THALES,III V Lab,CSEM,VPIphotonics (Germany),LETI,ROSENBERGER HOCHFREQUENZTECHNIK GMBH & CO. KG,SOITEC,L - UP SASFunder: European Commission Project Code: 101016138Overall Budget: 4,982,900 EURFunder Contribution: 4,982,900 EURELENA will develop the first European lithium niobate on insulator (LNOI) PIC platform, accessible to all interested entities in the form of an open foundry service. Lithium niobate (LiN) is one of the most promising emerging materials for PICs that comprises a unique set of interesting optical properties: a high electo-optic (EO) coefficient, a high intrinsic second-order nonlinearity, and a large transparency window. The focus of ELENA will be on developing 5 advanced photonic building blocks (BBs) which exploit the unique properties of LiN to enable novel functionalities in PIC (e.g. wavelength conversion and parametric gain) and to improve the existing ones (e.g. faster, more energy-efficient EO modulators). These BBs will be a part of comprehensive PDK library that will be accessible to entities outside of the consortium. ELENA’s approach will enable reliable monolithic integration of the LiN BBs to implement complex functionalities with better sensitivity, higher energy efficiency, faster speed and increased chip density. ELENA’s technologies will be applicable to a broad range of applications from telecom to LIDAR, quantum technologies and space. Moreover, ELENA’s ambition is to establish the key steps of a fully European supply chain to support the LiN platform. This include activities such as • Establish a process to produce 150mm optical grade LNOI wafers on an industrial scale • Develop a reliable and flexible packaging solution to interface LiN chips with optical fibers and other PIC platforms • Demonstrate the technology and validate the results by developing 4 PIC prototypes designed by 3 “end-user” partners covering fields of telecom, quantum technologies and microwave photonics The ELENA project (42 months, €5M) with a consortium of 3 RTDs , 3 large industrials and 3 SMEs contains all the necessary competencies to reduce the R&D costs of advanced PICs and implement the key aspects of a value chain for a sustainable LiN based PIC industry in Europe
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::361a626c51d589b645eeebf324aaeac6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::361a626c51d589b645eeebf324aaeac6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2017 - 2021Partners:UCC, LETI, VANGUARD AUTOMATION GMBH, OPTOSCRIBE, PHIX BV +20 partnersUCC,LETI,VANGUARD AUTOMATION GMBH,OPTOSCRIBE,PHIX BV,AT,XIO PHOTONICS BV,LIONIX BV,FICONTEC SERVICE GMBH,CORDON ELECTRONICS ITALIA SRL,LIONIX INTERNATIONAL BV,EPIC,TEO,Randox,SUSS MICROOPTICS,PHOENIX,III V Lab,Eblana Photonics (Ireland),TECHNOBIS,IMEC,TU/e,KIT,FHG,Microfluidic ChipShop (Germany),TEKNOLOGIAN TUTKIMUSKESKUS VTT OYFunder: European Commission Project Code: 731954Overall Budget: 15,690,900 EURFunder Contribution: 13,407,800 EURPIXAPP will establish the world’s first open access Photonic Integrated Circuit (PIC) assembly & packaging Pilot Line. It combines a highly-interdisciplinary team of Europe’s leading industrial & research organisations. PIXAPP provides Europe’s SMEs with a unique one-stop-shop, enabling them to exploit the breakthrough advantages of PIC technologies. PIXAPP bridges the ‘valley of death’, providing SMEs with an easy access route to take R&D results from lab to market, giving them a competitive advantage over global competition. Target markets include communications, healthcare & security, which are of great socio-economic importance to Europe. PIXAPP’s manufacturing capabilities can support over 120 users per year, across all stages of manufacturing, from prototyping to medium scale manufacture. PIXAPP bridges missing gaps in the value chain, from assembly & packaging, through to equipment optimisation, test and application demonstration. To achieve these ambitious objectives, PIXAPP will; 1) Combine a group of Europe’s leading industrial & research organisations in an advanced PIC assembly & packaging Pilot Line facility.2) Develop an innovative Pilot Line operational model that coordinates activities between consortium partners & supports easy user access through a single entry point. 3) Establish packaging standards that provide cost-efficient assembly & packaging solutions, enabling transfer to full-scale industrial manufacture. 4) Create the highly-skilled workforce required to manage & operate these industrial manufacturing facilities.5) Develop a business plan to ensure Pilot Line sustainability & a route to industrial manufacturing. PIXAPP will deliver significant impacts to a wide stakeholder group, highlighting how industrial & research sectors can collaborate to address emerging socio-economic challenges.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::38758e286096cffaf628d8d1ff719afe&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::38758e286096cffaf628d8d1ff719afe&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu