TATA Motors Engineering Technical Centre
TATA Motors Engineering Technical Centre
82 Projects, page 1 of 17
assignment_turned_in Project2014 - 2023Partners:Morgan Motor Company, Airbus Group Limited (UK), BAE Systems (Sweden), Shell Global Solutions International BV, Arup Group Ltd +87 partnersMorgan Motor Company,Airbus Group Limited (UK),BAE Systems (Sweden),Shell Global Solutions International BV,Arup Group Ltd,Motor Industry Research Assoc. (MIRA),Technology Strategy Board (Innovate UK),CERES POWER LIMITED,Bae Systems Defence Ltd,Scottish and Southern Energy SSE plc,RiverSimple,Morgan Motor Company,UKRI,Adelan Limited,Scottish and Southern Energy,Microcab Industries Limited,Cenex,University of Birmingham,Zytek Group Ltd,Arcola Energy,University of Birmingham,Airbus (United Kingdom),EADS Airbus,Miba Coatings Group,Scottish and Southern Energy SSE plc,Johnson Matthey plc,MIRA LTD,Arup Group,MiCo Group,ITM POWER PLC,Zytek Group Ltd,ITM Power,Riversimple Movement Ltd,Knowledge Transfer Networks KTN,AFCEN,Karlsruhe Institute of Technology / KIT,Ove Arup & Partners Ltd,Modern Built Environment,Airmax Group,EPL Composite Solutions,Revolve technologies Ltd,Ceres Power Ltd,UK Hydrogen and Fuel Cell Association,TATA Motors Engineering Technical Centre,National Physical Laboratory NPL,TATA Motors Engineering Technical Centre,Intelligent Energy,Eminate Limited,Census Bio UK,Adelan Limited,University of Ulster,Arcola Energy,Revolve technologies Ltd,STFC Swindon Office,PV3 Technologies Ltd,NPL,ITM Power plc,Hart Materials Limited,Microcab Industries Limited,BAE Systems (UK),University of Yamanashi,Forschungszentrum Karlsruhe,Hi Speed Sustainable Manufacturing Inst,HSSMI (High Speed Sust Manufact Inst),Idea Source,Airmax Group,McCamley Middle East Ltd UK,Hart Materials Limited,STFC,Innovate UK,Energy Technologies Institute (ETI),JOHNSON MATTHEY PLC,MIRA Ltd,ETI,Cenex,Miba Coatings Group,SHELL GLOBAL SOLUTIONS INTERNATIONAL B.V.,AFC Energy,BAE Systems (United Kingdom),McCamley Middle East Ltd UK,PV3 Technologies Ltd,EPL Composite Solutions,MiCo Group,Idea Source,UK Hydrogen and Fuel Cell Association,UU,University of Tech Belfort Montbeliard,University of Yamanashi,UFRJ,Eminate Limited,Intelligent Energy Ltd,JMFunder: UK Research and Innovation Project Code: EP/L015749/1Funder Contribution: 4,486,480 GBPThe CDT proposal 'Fuel Cells and their Fuels - Clean Power for the 21st Century' is a focused and structured programme to train >52 students within 9 years in basic principles of the subject and guide them in conducting their PhD theses. This initiative answers the need for developing the human resources well before the demand for trained and experienced engineering and scientific staff begins to strongly increase towards the end of this decade. Market introduction of fuel cell products is expected from 2015 and the requirement for effort in developing robust and cost effective products will grow in parallel with market entry. The consortium consists of the Universities of Birmingham (lead), Nottingham, Loughborough, Imperial College and University College of London. Ulster University is added as a partner in developing teaching modules. The six Centre directors and the 60+ supervisor group have an excellent background of scientific and teaching expertise and are well established in national and international projects and Fuel Cell, Hydrogen and other fuel processing research and development. The Centre programme consists of seven compulsory taught modules worth 70 credit points, covering the four basic introduction modules to Fuel Cell and Hydrogen technologies and one on Safety issues, plus two business-oriented modules which were designed according to suggestions from industry partners. Further - optional - modules worth 50 credits cover the more specialised aspects of Fuel Cell and fuel processing technologies, but also include socio-economic topics and further modules on business skills that are invaluable in preparing students for their careers in industry. The programme covers the following topics out of which the individual students will select their area of specialisation: - electrochemistry, modelling, catalysis; - materials and components for low temperature fuel cells (PEFC, 80 and 120 -130 degC), and for high temperature fuel cells (SOFC) operating at 500 to 800 degC; - design, components, optimisation and control for low and high temperature fuel cell systems; including direct use of hydrocarbons in fuel cells, fuel processing and handling of fuel impurities; integration of hydrogen systems including hybrid fuel-cell-battery and gas turbine systems; optimisation, control design and modelling; integration of renewable energies into energy systems using hydrogen as a stabilising vector; - hydrogen production from fossil fuels and carbon-neutral feedstock, biological processes, and by photochemistry; hydrogen storage, and purification; development of low and high temperature electrolysers; - analysis of degradation phenomena at various scales (nano-scale in functional layers up to systems level), including the development of accelerated testing procedures; - socio-economic and cross-cutting issues: public health, public acceptance, economics, market introduction; system studies on the benefits of FCH technologies to national and international energy supply. The training programme can build on the vast investments made by the participating universities in the past and facilitated by EPSRC, EU, industry and private funds. The laboratory infrastructure is up to date and fully enables the work of the student cohort. Industry funding is used to complement the EPSRC funding and add studentships on top of the envisaged 52 placements. The Centre will emphasise the importance of networking and exchange of information across the scientific and engineering field and thus interacts strongly with the EPSRC-SUPERGEN Hub in Fuel Cells and Hydrogen, thus integrating the other UK universities active in this research area, and also encourage exchanges with other European and international training initiatives. The modules will be accessible to professionals from the interacting industry in order to foster exchange of students with their peers in industry.
more_vert assignment_turned_in Project2016 - 2019Partners:University of Southampton, [no title available], Jaguar Cars, JAGUAR LAND ROVER LIMITED, TATA Motors Engineering Technical Centre +1 partnersUniversity of Southampton,[no title available],Jaguar Cars,JAGUAR LAND ROVER LIMITED,TATA Motors Engineering Technical Centre,University of SouthamptonFunder: UK Research and Innovation Project Code: EP/N022262/1Funder Contribution: 1,668,850 GBPVehicle energy management (EM) systems currently concentrate on controlling the drivetrain to deliver the requested power to the wheels optimally from one or more energy sources, depending on the level of hybridisation of the drivetrain. Despite the existence of a vast range of such systems, encompassing rule-based to optimisation-based schemes, a number of challenges remain and opportunities exist to realise the next generation of more efficient EM control. The Green Adaptive Control for Future Interconnected Vehicles project aims to directly address these challenges by developing, implementing and testing EM systems that will now be global (simultaneous optimisation of the drivetrain energy, auxiliary systems energy and driving speed rather than only of the drivetrain energy), predictive (optimisation over a 'look ahead' horizon rather than just based on the instantaneous power demand), and newly adaptive (taking into account driver's preferences, traffic and other environmental conditions). The ultimate goal is to reduce by more than 3-5% the fuel consumption of the future fleet of passengers and light duty vehicles for a range of drivetrain architectures (conventional, electric and hybrid electric) and auxiliary systems (cooling systems, and other). To reach this objective this project will design, implement and demonstrate a new generation of EM together with an Adaptive Cruise Control system, which will automatically drive the vehicle at the most appropriate speed. For this to be effective, we also need to make the drivers aware of the benefits and to make small changes in their driving behaviour. Indeed, substantial reductions in energy consumption can be achieved by making small changes to the behaviour of a large number of drivers. Human factors methods will be used in this research to optimise the design of such new EM control systems. The proposed EM systems will have three operating modes: Autonomous, Coaching and Manual, which are all based on the same three layers structure. The first one is the Perception layer, which has the purpose of gathering navigation (e.g. route) information, driving information (e.g. the vehicle position, speed and acceleration), information related to the surrounding vehicles, and finally infrastructure conditions (e.g. the state of the next traffic lights series). We will use this information to feed the Decision layer, which is where the intelligence of the system will lay, and which will also be the core of our project. In the Autonomous mode, the system will manage the car in a much smarter way than a human driver by selecting, case by case, the most appropriate vehicle speed and acceleration taking into account all environmental constraints such as road characteristics, desired time to destination and traffic conditions. Once the EM and speed will be optimised, the Action layer will safely drive the vehicle at the most appropriate speed thanks to the Adaptive Cruise Control system. Even if drivers are not always keen to accept such autonomous systems and want to drive according to their personal style, significant fuel reduction may be achieved by using predictive optimisation, in which the system tries to anticipate the future power demand, which is predicted by the system itself according to the information available. Indeed, by selecting the Manual operating mode, the driver behaviour will be predicted by using a mathematical model that will be appositely developed in this project and eventually we will use such prediction to optimise the EM and reduce fuel consumption. Finally, while using the Coaching operating mode, the most appropriate speed will be calculated by the system and then recommended to the driver by using an appropriate haptic (and possibly visual and acoustic) Human Machine Interface, but the driver will maintain the freedom and the responsibility of keeping the preferred speed.
more_vert assignment_turned_in Project2019 - 2028Partners:JAGUAR LAND ROVER LIMITED, UCL, ESTECO, Julia Computing, Internat Agency for Res on Cancer (IARC) +56 partnersJAGUAR LAND ROVER LIMITED,UCL,ESTECO,Julia Computing,Internat Agency for Res on Cancer (IARC),Food and Agriculture Organisation,Stowers Institute of Medical Research,HEFT,TATA Motors Engineering Technical Centre,Rockefeller University,University of Birmingham,Thales Group (UK),University of Warwick,THE PIRBRIGHT INSTITUTE,DH,Thales Aerospace,Liverpool School of Tropical Medicine,Betsi Cadwaladr University Health Board,University of Warwick,Philips Electronics U K Ltd,Thales Group,MRC National Inst for Medical Research,Rockefeller University,DHSC,Int Agency for Research on Cancer,The Pirbright Institute,Inserm,Spectra Analytics,Stowers Institute for Medical Research,Spectra Analytics,TRL Ltd (Transport Research Laboratory),Rockefeller University,Curie Institute,ESTECO,Intelligent Imaging Innovations Ltd,PUBLIC HEALTH ENGLAND,Department of Health and Social Care,Institute Curie,The Francis Crick Institute,Public Health England,Birmingham Women’s & Children’s NHS FT,BBSRC,LifeGlimmer GmBH,Intelligent Imaging Innovations Ltd,Heart of England NHS Foundation Trust,PHE,Philips (UK),The Francis Crick Institute,Philips (United Kingdom),Jaguar Cars,Betsi Cadwaladr University Health Board,TRL,Betsi Cadwaladr University Health Board,FAO (Food & Agricultural Org of the UN),University of Birmingham,INSERM,Pirbright Institute,Birmingham Women's Hospital,Birmingham Women’s and Children’s NHS Foundation Trust,LifeGlimmer GmBH,Liverpool School of Tropical MedicineFunder: UK Research and Innovation Project Code: EP/S022244/1Funder Contribution: 5,143,730 GBPWe propose a new phase of the successful Mathematics for Real-World Systems (MathSys) Centre for Doctoral Training that will address the call priority area "Mathematical and Computational Modelling". Advanced quantitative skills and applied mathematical modelling are critical to address the contemporary challenges arising from biomedicine and health sectors, modern industry and the digital economy. The UK Commission for Employment and Skills as well as Tech City UK have identified that a skills shortage in this domain is one of the key challenges facing the UK technology sector: there is a severe lack of trained researchers with the technical skills and, importantly, the ability to translate these skills into effective solutions in collaboration with end-users. Our proposal addresses this need with a cross-disciplinary, cohort-based training programme that will equip the next generation of researchers with cutting-edge methodological toolkits and the experience of external end-user engagement to address a broad variety of real-world problems in fields ranging from mathematical biology to the high-tech sector. Our MSc training (and continued PhD development) will deliver a core of mathematical techniques relevant to all applied modelling, but will also focus on two cross-cutting methodological themes which we consider key to complex multi-scale systems prediction: modelling across spatial and temporal scales; and hybrid modelling integrating complex data and mechanistic models. These themes pervade many areas of active research and will shape mathematical and computational modelling for the coming decades. A core element of the CDT will be productive and impactful engagement with end-users throughout the teaching and research phases. This has been a distinguishing feature of the MathSys CDT and is further expanded in our new proposal. MSc Research Study Groups provide an ideal opportunity for MSc students to experience working in a collaborative environment and for our end-users to become actively involved. All PhD projects are expected to be co-supervised by an external partner, bringing knowledge, data and experience to the modelling of real-world problems; students will normally be expected to spend 2-4 weeks (or longer) with these end-users to better understand the case-specific challenges and motivate their research. The potential renewal of the MathSys CDT has provided us with the opportunity to expand our portfolio of external partners focusing on research challenges in four application areas: Quantitative biomedical research, (A2) Mathematical epidemiology, (A3) Socio-technical systems and (A4) Advanced modelling and optimization of industrial processes. We will retain the one-year MSc followed by three-year PhD format that has been successfully refined through staff experience and student feedback over more than a decade of previous Warwick doctoral training centres. However, both the training and research components of the programme will be thoroughly updated to reflect the evolving technical landscape of applied research and the changing priorities of end-users. At the same time, we have retained the flexibility that allows co-creation of activities with our end-users and allows us to respond to changes in the national and international research environments on an ongoing yearly basis. Students will share a dedicated space, with a lecture theatre and common area based in one of the UK's leading mathematical departments. The space is physically connected to the new Mathematical Sciences building, at the interface of Mathematics, Statistics and Computer Science, and provides a unique location for our interdisciplinary activities.
more_vert assignment_turned_in Project2011 - 2014Partners:Rolls-Royce (United Kingdom), TATA Motors Engineering Technical Centre, Jaguar Cars, The University of Manchester, European Thermodynamics Ltd +18 partnersRolls-Royce (United Kingdom),TATA Motors Engineering Technical Centre,Jaguar Cars,The University of Manchester,European Thermodynamics Ltd,QMUL,University of Salford,EMPA - Materials Science & Technology,Tsinghua University,Ricardo UK,University of Manchester,EMPA,Queen Mary University of London,Ricardo (United Kingdom),Rolls-Royce Plc (UK),Morgan Electroceramics,European Thermodynamics (United Kingdom),JAGUAR LAND ROVER LIMITED,Morgan Electro Ceramics,Morgan Crucible,Tsinghua University,UNIPD,Rolls-Royce (United Kingdom)Funder: UK Research and Innovation Project Code: EP/I036230/1Funder Contribution: 362,168 GBPThe Seebeck effect is a thermoelectric effect whereby a temperature gradient across a material is converted to a voltage, which can be exploited for power generation. The growing concern over fossil fuels and carbon emissions has led to detailed reviews of all aspects of energy generation and routes to reduce consumption. Thermoelectric (TE) technology, utilising the direct conversion of waste heat into electric power, has emerged as a serious contender, particular for automotive and engine related applications. Thermoelectric power modules employ multiple pairs of n-type and p-type TE materials. Traditional metallic TE materials (such as Bi2Te3 and PbTe), available for 50 years, are not well suited to high temperature applications since they are prone to vaporization, surface oxidation, and decomposition. In addition many are toxic. Si-Ge alloys are also well established, with good TE performance at temperatures up to 1200K but the cost per watt can be up to 10x that of conventional materials. In the last decade oxide thermoelectrics have emerged as promising TE candidates, particularly perovskites (such as n-type CaMnO3) and layered cobaltites (e.g. p-type Ca3Co4O9) because of their flexible structure, high temperature stability and encouraging ZT values, but they are not yet commercially viable. Thus this investigation is concerned with understanding and improving the thermoelectric properties of oxide materials based on CaMnO3 and ZnO. Furthermore, not only do they represent very promising n-type materials in their own right but by using them as model materials with different and well-characterised structures we aim to use them to identify quantitatively how different factors control thermoelectric properties. The conversion efficiency of thermoelectric materials is characterised by the figure of merit ZT (where T is temperature); ZT should be as high as possible. To maximise the Z value requires a high Seebeck coefficient (S), coupled with small thermal conductivity and high electrical conductivity. In principle electrical conductivity can be adjusted by changes in cation/anion composition. The greater challenge is to concurrently reduce thermal conductivity. However in oxide ceramics the lattice conductivity dominates thermal transport since phonons are the main carriers of heat. This affords the basis for a range of strategies for reducing heat conduction; essentially microstructural engineering at the nanoscale to increase phonon scattering. The nanostructuring approaches will be: (i) introduction of foreign ions into the lattice, (ii) development of superlattice structures, (iii) nanocompositing by introducing texture or nm size features (iv) development of controlled porosity of different size and architecture, all providing additional scattering centres. Independently, TE enhancement can also be achieved by substitution of dopants to adjust the electrical conductivity. By systematically investigating the effect of nanostructuring in CaMnO3 and ZnO ceramics, plus the development of self-assembly nanostructures we will be able to define the relative importance of the factors and understand the mechanisms controlling thermal and electron transport in thermoelectric oxides. A key feature of the work is that we will adopt an integrated approach, combining advanced experimental and modelling techniques to investigate the effect of nanostructured features on the properties of important thermoelectric oxide. The modelling studies will both guide the experimentalists and provide quantitative insight into the controlling mechanisms and processes occurring at the atom level to the grain level, while the experiments will provide a rigorous test of the calculation of the different thermoelectric properties. We will assess the mechanical performance of optimised n-type and p-type materials, and then construct thermoelectric modules which will be evaluated in automobile test environments.
more_vert assignment_turned_in Project2009 - 2012Partners:TATA Motors Engineering Technical Centre, Meridian Business Development UK, TISCO, Novelis Global Technology Centre (NGTC), Sonobond +14 partnersTATA Motors Engineering Technical Centre,Meridian Business Development UK,TISCO,Novelis Global Technology Centre (NGTC),Sonobond,University of Salford,University of Manchester,Sonobond,The University of Manchester,Tata Steel (United Kingdom),Corus UK,JAGUAR LAND ROVER,Meridian Lightweight Technologies UK Ltd,Jaguar Land Rover (United Kingdom),Novelis Global Technology Centre,Airbus,Tata Steel (United Kingdom),Airbus (United Kingdom),AIRBUS OPERATIONS LIMITEDFunder: UK Research and Innovation Project Code: EP/G022402/1Funder Contribution: 406,440 GBPThere are clear drivers in the transport industry towards lower fuel consumption and CO2 emissions through the introduction of designs involving combinations of different material classes, such as steel, titanium, magnesium and aluminium alloys, metal sheet and castings, and laminates in more efficient hybrid structures. The future direction of the transport industry will thus undoubtedly be based on multi-material solutions. This shift in design philosophy is already past the embryonic stage, with the introduction of aluminium front end steel body shells (BMW 5 series) and the integration of aluminium sheet and magnesium high pressure die castings in aluminium car bodies (e.g. Jaguar XK).Such material combinations are currently joined by fasteners, which are expensive and inefficient, as they are very difficult to weld by conventional technologies like electrical resistance spot, MIG arc, and laser welding. New advanced solid state friction based welding techniques can potentially overcome many of the issues associated with joining dissimilar material combinations, as they lower the overall heat input and do not melt the materials. This greatly reduces the tendency for poor bond strengths, due to interfacial reaction and solidification cracking, as well as damage to thermally sensitive materials like laminates and aluminium alloys used in automotive bodies, which are designed to harden during paint baking. Friction joining techniques are also far more efficient, resulting in energy savings of > 90% relative to resistance spot and laser welding, are more robust processes, and can be readily used in combination with adhesive bonding.This project, in close collaboration with industry (e.g. Jaguar - Land Rover, Airbus, Corus, Meridian, Novelis, TWI, Sonobond) will investigate materials and process issues associated with optimising friction joining of hybrid, more mass efficient structures, focusing on; Friction Stir, Friction Stir Spot, and High Power Ultrasonic Spot welding. The work will be underpinned by novel approaches to developing models of these exciting new processes and detailed analysis and modelling of key material interactions, such as interfacial bonding / reaction and weld microstructure formation.
more_vert
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
