Powered by OpenAIRE graph

SIEMENS PLC

SIEMENS PUBLIC LIMITED COMPANY
Country: United Kingdom
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
125 Projects, page 1 of 25
  • Funder: UK Research and Innovation Project Code: EP/R021279/1
    Funder Contribution: 101,170 GBP

    The primary users of gas turbines are being impacted by rising fossil fuel prices and stringent government targets for reducing carbon-dioxide emissions. This is putting increasing pressure on gas turbine manufacturers to improve engine efficiencies so that their products remain competitive. One way of improving the efficiency of a gas turbine is to raise the turbine entry temperature (TET). Present-day engines operate with TETs as high as 2000K, which is well above the melting point of the alloys from which first-stage turbine blades are made. Two cooling techniques are employed to prevent damage to the blades from high TETs: film cooling, where a thin film of coolant introduced to the external surface of the blade reduces the driving-temperature for heat transfer; and internal cooling, where coolant is passed through a series of passages within the blade to convect heat from the internal surfaces. The air for this cooling is taken from the compressor at a penalty to engine efficiency: for every 1% of air drawn from the compressor a 1% drop in isentropic efficiency follows. Relatively few experimental studies have investigated coupled film and internal cooling; consequently there are insufficient published data for validation of the models used to predict blade metal temperatures. There is little margin for error in these predictions: the life of a blade can be reduced by half if the temperature at which it operates is 10K higher than predicted. As a result, blades are often superfluously cooled at the expense of engine efficiency. Validated models would enable blade cooling schemes to be designed with more confidence. This would reduce design conservatism, enabling more efficiently cooled designs with an associated improvement in engine efficiency. It would also reduce the costly risk of re design or in-service replacement of inadequately cooled blades. The proposed project will design and build a highly-modular rig for obtaining fluid dynamic and heat transfer information on test pieces subjected to coupled film and internal cooling. The rig will make use of the University of Bath's state-of-the-art EPSRC funded Versatile Fluid Measurement System (VFMS), enabling high-precision measurements of heat transfer coefficients and temperatures on the surface of the test pieces, and the concentration field and three component velocities in the fluid volume above the film cooling holes. The flexibility of the facility combined with the unparalleled fidelity of measurement techniques offered through the VFMS will make it a highly novel and extremely useful platform for studying combined film-internal cooling. Findings from the project will provide unique insight into the fundamental science of the research problem and will supply Siemens - the industrial partner in this proposal - with data to validate their models and inform design methodology. The data will also be made available to workers in the wider gas turbine technical community and academia.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/T012595/1
    Funder Contribution: 5,813,730 GBP

    The ultimate ambition of the proposed research programme is reduced environmental impact of aviation and power generating gas turbine engines. Serious emissions reduction can only come from better understanding and modelling of the combustion and emissions generation processes and the roles of different fuels. Several disruptive chemical and particulate species measurement methods will be developed for detailed combustion zone and exhaust characterisation. These transformational new measurement capabilities will be applied to establishing, for the first, time the spatial and temporal evolution of combustion species and unwanted emissions within the engines. Such measurements will inform new understanding of the combustion and emissions generation processes and enable new technical strategies to ultimately deliver improved engine and fuel technologies for reduced emissions.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G063044/1
    Funder Contribution: 517,239 GBP

    Coal-fired generation accounts for 82% of China's total power supply. Even in the UK the coal-fired generation still accounts for 35% . Because of this, the efficient and clean burn of coal is of great importance to the energy sector. Coal gasification and the proper treatment of the generated syngas before the combustion can reduce emissions significantly through alternative power generation system such as Integrated Gasification Combined Cycle (IGCC). The syngas usually contains varying amounts of hydrogen. The existence of hydrogen in the syngas may cause undesirable flame flashback phenomenon, in which the flame propagates into the burner. The fast flame propagation speed of hydrogen can travel further upstream and even attached to the wall of the combustor. The strong heat transfer to the wall may damage the combustor components. The consequence can be very costly. Because of this, many existing combustors are not suitable for the burning of syngas. To overcome this bottle neck, in-depth knowledge of the flame dynamics of hydrogen enriched fuel is essential, which is still not available. There is also a need to study the flame-wall interactions, which are important to the life span of a combustor but have not been fully understood.In order to understand the complex combustion process of hydrogen enriched fuels, combined efforts from experimentation and numerical simulations are essential. This joint project will investigate the flame dynamics including the flame flashback phenomenon, combustion instability, and flame-wall interactions. The flame dynamics will be investigated for different types of burners with fuel variability. Due to the limitation of optical access, the flame measurements need to be complimented by high-fidelity numerical simulations. The dynamic behaviour of the flame will be experimentally captured by the innovative combustion diagnostic tools developed at Manchester. To complement the experimental work, advanced numerical simulations based on direct numerical simulation and large eddy simulation will be performed at Brunel. The proposed research activities are based on the existing tools developed by the investigators and preliminary studies that have already been carried out by the applicants. The project will further develop innovative combustion diagnostic and advanced numerical tools. The knowledge to be gained from the project research and the physical models to be developed including improved near-wall flow, heat transfer and combustion models can lead to better combustion control and combustor design. The joint project will enhance the understanding on combustion of hydrogen enriched fuels with scientific advancement in flame measurements and near-wall flow modelling. More importantly, it will enhance the development of technologies for clean combustion of hydrogen enriched fuels, leading to a clean coal industry.Collaboration This project has excellent synergy between the UK and Chinese partners. Both partners are linked to BP. The Manchester group is directly supported by BP AE to work on combustion instability. Tsinghua University is one of the few identified links of BP in China. The involvement of Siemens Industrial Turbomachinery Ltd will ensure the maximum input from a gas turbine manufacturer's point of view.Management Both partners have long term informal research connections and the well established communications will ensure the smoothing running of the project. The PIs are well experienced in working with large research consortia. Dr Zhang has close collaboration with the industrial partners.Novelty Valuable physical insight into the potentially damaging combustion phenomena of hydrogen enriched fuels such as syngas burning will be provided; Original combustion diagnostics will be developed; Advanced numerical simulations will be performed; Near-wall flow, heat transfer and combustion models for unsteady reacting flows will be developed.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/V00784X/1
    Funder Contribution: 14,069,700 GBP

    Public opinion on complex scientific topics can have dramatic effects on industrial sectors (e.g. GM crops, fracking, global warming). In order to realise the industrial and societal benefits of Autonomous Systems, they must be trustworthy by design and default, judged both through objective processes of systematic assurance and certification, and via the more subjective lens of users, industry, and the public. To address this and deliver it across the Trustworthy Autonomous Systems (TAS) programme, the UK Research Hub for TAS (TAS-UK) assembles a team that is world renowned for research in understanding the socially embedded nature of technologies. TASK-UK will establish a collaborative platform for the UK to deliver world-leading best practices for the design, regulation and operation of 'socially beneficial' autonomous systems which are both trustworthy in principle, and trusted in practice by individuals, society and government. TAS-UK will work to bring together those within a broader landscape of TAS research, including the TAS nodes, to deliver the fundamental scientific principles that underpin TAS; it will provide a focal point for market and society-led research into TAS; and provide a visible and open door to engage a broad range of end-users, international collaborators and investors. TAS-UK will do this by delivering three key programmes to deliver the overall TAS programme, including the Research Programme, the Advocacy & Engagement Programme, and the Skills Programme. The core of the Research Programme is to amplify and shape TAS research and innovation in the UK, building on existing programmes and linking with the seven TAS nodes to deliver a coherent programme to ensure coverage of the fundamental research issues. The Advocacy & Engagement Programme will create a set of mechanisms for engagement and co-creation with the public, public sector actors, government, the third sector, and industry to help define best practices, assurance processes, and formulate policy. It will engage in cross-sector industry and partner connection and brokering across nodes. The Skills Programme will create a structured pipeline for future leaders in TAS research and innovation with new training programmes and openly available resources for broader upskilling and reskilling in TAS industry.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L016362/1
    Funder Contribution: 3,527,890 GBP

    The motivation for this proposal is that the global reliance on fossil fuels is set to increase with the rapid growth of Asian economies and major discoveries of shale gas in developed nations. The strategic vision of the IDC is to develop a world-leading Centre for Industrial Doctoral Training focussed on delivering research leaders and next-generation innovators with broad economic, societal and contextual awareness, having strong technical skills and capable of operating in multi-disciplinary teams covering a range of knowledge transfer, deployment and policy roles. They will be able to analyse the overall economic context of projects and be aware of their social and ethical implications. These skills will enable them to contribute to stimulating UK-based industry to develop next-generation technologies to reduce greenhouse gas emissions from fossil fuels and ultimately improve the UK's position globally through increased jobs and exports. The Centre will involve over 50 recognised academics in carbon capture & storage (CCS) and cleaner fossil energy to provide comprehensive supervisory capacity across the theme for 70 doctoral students. It will provide an innovative training programme co-created in collaboration with our industrial partners to meet their advanced skills needs. The industrial letters of support demonstrate a strong need for the proposed Centre in terms of research to be conducted and PhDs that will be produced, with 10 new companies willing to join the proposed Centre including EDF Energy, Siemens, BOC Linde and Caterpillar, together with software companies, such as ANSYS, involved with power plant and CCS simulation. We maintain strong support from our current partners that include Doosan Babcock, Alstom Power, Air Products, the Energy Technologies Institute (ETI), Tata Steel, SSE, RWE npower, Johnson Matthey, E.ON, CPL Industries, Clean Coal Ltd and Innospec, together with the Biomass & Fossil Fuels Research Alliance (BF2RA), a grouping of companies across the power sector. Further, we have engaged SMEs, including CMCL Innovation, 2Co Energy, PSE and C-Capture, that have recently received Department of Energy and Climate Change (DECC)/Technology Strategy Board (TSB)/ETI/EC support for CCS projects. The active involvement companies have in the research projects, make an IDC the most effective form of CDT to directly contribute to the UK maintaining a strong R&D base across the fossil energy power and allied sectors and to meet the aims of the DECC CCS Roadmap in enabling industry to define projects fitting their R&D priorities. The major technical challenges over the next 10-20 years identified by our industrial partners are: (i) implementing new, more flexible and efficient fossil fuel power plant to meet peak demand as recognised by electricity market reform incentives in the Energy Bill, with efficiency improvements involving materials challenges and maximising biomass use in coal-fired plant; (ii) deploying CCS at commercial scale for near-zero emission power plant and developing cost reduction technologies which involves improving first-generation solvent-based capture processes, developing next-generation capture processes, and understanding the impact of impurities on CO2 transport and storage; (iimaximising the potential of unconventional gas, including shale gas, 'tight' gas and syngas produced from underground coal gasification; and (iii) developing technologies for vastly reduced CO2 emissions in other industrial sectors: iron and steel making, cement, refineries, domestic fuels and small-scale diesel power generatort and These challenges match closely those defined in EPSRC's Priority Area of 'CCS and cleaner fossil energy'. Further, they cover biomass firing in conventional plant defined in the Bioenergy Priority Area, where specific issues concern erosion, corrosion, slagging, fouling and overall supply chain economics.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.