Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Van der Waals - Zeeman Instituut
Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Van der Waals - Zeeman Instituut
11 Projects, page 1 of 3
assignment_turned_in ProjectFrom 2024Partners:Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Van der Waals - Zeeman Instituut, Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Institute of Physics (IoP)Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Van der Waals - Zeeman Instituut,Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Institute of Physics (IoP)Funder: Netherlands Organisation for Scientific Research (NWO) Project Code: 21239The materials from which life is built are typically soft, adaptable and active. In order to study them, we need model materials with similar properties. Based on new insights into a complex material class called elasto-viscoplastics, which includes toothpaste, I propose to develop a new class of active elasto-viscoplastics (A-EVP). These materials could mimic natural life processes like cell migration and embryo development. I will integrate advanced experiments and simulations to develop a mechanical framework, enhancing our understanding of biological mechanics and advancing the creation of innovative, bio-inspired materials like smart 3D-printed and autonomous active matter.
more_vert assignment_turned_in Project2023 - 9999Partners:Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Institute of Physics (IoP), Vrije Universiteit Amsterdam, Faculteit der Bètawetenschappen (Faculty of Science), Afdeling Natuur- en Sterrenkunde (Physics and Astronomy), Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Van der Waals - Zeeman Instituut, Universiteit van Amsterdam, Vrije Universiteit Amsterdam, Faculteit der Bètawetenschappen (Faculty of Science), Afdeling Natuur- en Sterrenkunde (Physics and Astronomy), Atoms, Molecules and Lasers +2 partnersUniversiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Institute of Physics (IoP),Vrije Universiteit Amsterdam, Faculteit der Bètawetenschappen (Faculty of Science), Afdeling Natuur- en Sterrenkunde (Physics and Astronomy),Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Van der Waals - Zeeman Instituut,Universiteit van Amsterdam,Vrije Universiteit Amsterdam, Faculteit der Bètawetenschappen (Faculty of Science), Afdeling Natuur- en Sterrenkunde (Physics and Astronomy), Atoms, Molecules and Lasers,Vrije Universiteit Amsterdam, Faculteit der Bètawetenschappen (Faculty of Science), Afdeling Natuur- en Sterrenkunde (Physics and Astronomy), Theoretische Natuurkunde,VUFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: OCENW.XL21.XL21.122Quantum theories of physics have played a pivotal role in science and technology. Much of our understanding of nature is embodied by the standard model of particle physics, the overarching relativistic quantum field theory. Its theoretical predictions have been successfully compared with experimental results at astounding levels of precision (currently at the parts-per-trillion level and better). Quantum theories also form the basis of a revolution that is currently unfolding in science, driven by the development of technology whose primary principle of operation is based on the laws of quantum mechanics. Examples include quantum computers, which promise to completely outperform their classical counterparts, and quantum cryptography, which can potentially deliver completely secure communication. Notwithstanding these successes, quantum theories are faced with a number of challenges. For example, the measured magnetic moment of the muon particle deviates significantly from standard-model predictions. Moreover, astronomical observations suggest that the universe is filled with dark matter and dark energy, phenomena for which the standard model offers no explanation. In this context it is worth noting that in the past, precise spectroscopic measurements of simple atomic and molecular systems have repeatedly led to ground-breaking discoveries of (then unknown) quantum phenomena (such as quantum electrodynamics). Also today, simple atoms and molecules form promising systems for tests of the validity of the standard model, as well as searches for yet undiscovered particles and interactions. However, current ‘classical’ spectroscopic methods are running out of steam to provide the sensitivity and precision needed to test present and future standard-model predictions. In this research program, we will exploit the opportunities offered by cutting-edge quantum technologies to boost the sensitivity of tests of the standard model at the atomic and molecular scale by orders of magnitude. To this end, we will use the working principle of the trapped-ion quantum computer to dramatically enhance measurement capabilities in precision spectroscopy with immediate applications in fundamental physics, quantum chemistry, and quantum many-body physics. In particular, we will develop and perform highly sensitive and accurate quantum enhanced spectroscopy that overcomes many of the limitations of present-day spectroscopic techniques, and use it to measure the energy-level structure of some of the simplest (calculable) composite systems in nature: the two-body atomic helium ion and the three-body molecular hydrogen ion. We will compare the results with precise theoretical predictions, thus achieving 10-100 times more stringent tests of the standard model, and improved values of fundamental physical constants. Moreover, quantum-enhanced spectroscopy of the various atomic and molecular degrees of freedom that will become accessible through this program will establish a sensitive and versatile quantum sensor that could detect (or rule out) possible anomalies in the interactions between electrons, nuclei, and nucleons, which might arise from yet undiscovered physics beyond the standard model. Such a quantum-engineered ‘new-physics sensor’ may thus help answer pressing questions in contemporary physics regarding the ultimate validity of the standard model, and the nature of the elusive dark matter that fills 27% of our universe.
more_vert assignment_turned_in Project2021 - 2022Partners:AUAS, Universiteit van Amsterdam, Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Van der Waals - Zeeman InstituutAUAS,Universiteit van Amsterdam,Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Van der Waals - Zeeman InstituutFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: OCENW.XS21.1.140Bringing together the fields of hydrodynamics of complex fluids and microgravity physics, this project targeted the foundations needed to design and test soft matter printers for low and zero gravity conditions. To this end, we constructed an experimental setup. We then used ZARM’s drop tower facility in Bremen for microgravity conditions. We systematically studied the spreading of complex fluids on surfaces with and without gravity. Such results are essential to construct optimal fluid-based systems such as 3D printing in space. Our experiments also provide unique results where multiple theoretical and computational studies can be tested.
more_vert assignment_turned_in Project2018 - 2023Partners:Universiteit van Amsterdam, Technische Universiteit Delft, Faculteit Technische Natuurwetenschappen, Chemical Engineering, Wageningen University & Research, Afdeling Agrotechnologie & Voedingswetenschappen, Levensmiddelenproceskunde (FPE), Universiteit van Amsterdam, Wageningen University & Research +5 partnersUniversiteit van Amsterdam,Technische Universiteit Delft, Faculteit Technische Natuurwetenschappen, Chemical Engineering,Wageningen University & Research, Afdeling Agrotechnologie & Voedingswetenschappen, Levensmiddelenproceskunde (FPE),Universiteit van Amsterdam,Wageningen University & Research,Wageningen University & Research, Afdeling Agrotechnologie & Voedingswetenschappen, Physical Chemistry and Soft Matter,Wageningen University & Research,Technische Universiteit Delft,Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Institute of Physics (IoP),Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Van der Waals - Zeeman InstituutFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: 680-91-012This industrial Partnership Programme aims at understanding the rheology of complex emulsions and their stability under flow. While there is much empirical knowledge about emulsion rheology and stability, the microscopic physical mechanisms that govern emulsion behaviour are still poorly understood, in particular for emulsions with a complexity that goes beyond the standard oil/water/surfactant systems. This lack of understanding greatly hampers the rational design of emulsion-based products and processes. In this project we developed novel tools to study the flow and stability of emulsions, and used these to obtain a more detailed understanding.
more_vert assignment_turned_in ProjectFrom 2024Partners:Technische Universiteit Delft, Universiteit van Amsterdam, Technische Universiteit Delft, Faculteit Mechanical Engineering (ME), Precision and Microsystems Engineering (PME), Universiteit van Amsterdam, Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Institute of Physics (IoP) +2 partnersTechnische Universiteit Delft,Universiteit van Amsterdam,Technische Universiteit Delft, Faculteit Mechanical Engineering (ME), Precision and Microsystems Engineering (PME),Universiteit van Amsterdam,Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Institute of Physics (IoP),Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Van der Waals - Zeeman Instituut,Technische Universiteit DelftFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: KICH1.ST04.22.005This project aims to revolutionize the way we control fractures in various industries such as aerospace, automotive, protective equipment, and food design. By using specially designed metamaterials at the millimetre scale, the project seeks to steer fracture paths instead of preventing them. This innovative approach could lead to controlled failure in structures, increased durability, and improved energy absorption. The project will also collaborate with industry partners to create real-world prototypes that enhance safety in vehicles and aircrafts, enhance protective equipments and improve sensory experiences in food products.
more_vert
chevron_left - 1
- 2
- 3
chevron_right
