Powered by OpenAIRE graph

GSI Group (United Kingdom)

GSI Group (United Kingdom)

3 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/J013242/1
    Funder Contribution: 93,170 GBP

    Micromachining materials such as ceramics and polymers for use in the medical implant or electronics industry is becoming an increasingly important activity for UK industry. Creating features on the micron scale or depositing coatings on the nanoscale has enabled the above industrial sectors to develop new solutions to such applications as: the acceptance of implants by the human body or patterning of thin conduction layers on touch-screen displays at a high resolution, allowing the phone's owner to watch movies while travelling. All of these breakthroughs in medical devices and microelectronics, are made possible by the creation of small features. Laser Induced Micro Plasma Processing (LIMP2) will be an enabling tool allowing the production of features smaller than the actual laser spot which can be as less than 10 um. LIMP2 would also allow lasers to be used on materials that up to now have been impossible to machine by laser. The aim of the project is to develop an understanding of how a plasma, a highly energetic hot gas, and laser beam interact at the surface of different substrates such as polymers, glass, metals and ceramics. It will attempt to answer such questions as "Can we control the plasma-laser beam interaction using electrical and magnetic fields and in so doing create interesting effects that will allow the plasma to be pinched into an area that is smaller than the laser spot diameter"? In so doing LIMP2 will allow a relative inexpensive laser system to machine directly on the nanoscale. LIMP2 will introduce a new manufacturing technology that will be employed in the manufacturing of high value high performance electronic goods. This will benefit the UK suppliers of laser sources into the electronics production machine market. The other benefit that the general public will see in terms of healthcare. An important application in the medical field is microstructure texturing of medical implants such as stents and artificial joints. LIMP2 can be used to create novel microstructures that have the property of being able to control how a living cell interacts with the surface of the implant. The structures will allow one type of cell to grow while suppressing other types that would prove detrimental to the patient's health, causing swelling of a joint and possible rejection of the implant. The UK companies who are supporting the project will also gain immediate benefits from a successful conclusion of the project. Two laser companies are working together to support the project, one based in the Midlands the other in the South West of England. LIMP2 would open new markets for their laser systems allowing them to compete in the competitive microelectronics market in the Far East. Two of the projects supporting companies Biomer Technology and MicroSystems plan to use LIMP2 in medical devices market but on very different materials. Biomer Technology produces a polymeric coating that they use to coat medical devices. Biomer is interested in LIMP2 micro-machined surfaces that can control cell growth. MicroSystems on the other hand produce micro-moulds for major pharmaceutical companies. MicroSystems see LIMP2 being used on their micro-moulds to produce surfaces that are hydrophilic, (likes water) or hydrophobic, repels water molecules. This type of control over a surface property is very useful not only in the medical device sector but in other sectors such as aerospace, electronics, and the defence industry.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K030884/1
    Funder Contribution: 5,571,750 GBP

    A Centre for Innovative Manufacture in Laser-based Production Processes is proposed. This Centre will exploit the unique capabilities of laser light to develop new laser-based manufacturing processes, at both micro and macro levels, supported by new laser source, process monitoring and system technologies. The past 25 years has seen industrial lasers replace many 'conventional' tools in diverse areas of manufacture, enabling increased productivity, functionality and quality, where for example laser processing (cut/join/drill/mark) has revolutionised automotive, aerospace and electronics production. However the penetration of laser technology into some areas such as welding and machining has been less than might have been anticipated. But recently there has been a significant 'step change-opportunity' to take laser-based processing to a new level of industrial impact, brought about by major advances in laser technology in two key areas: (i) A new generation of ultra-high quality and reliability lasers based around solid state technology (laser diode and optical fibre) has evolved from developments in the telecoms sector. These lasers are leading to systems with very high levels of spatial and temporal controllability. This control, combined with advanced in-process measurement techniques, is revolutionising the science and understanding of laser material interactions. The result of this is that major improvements are being made in existing laser based processes and that new revolutionary processes are becoming viable, e.g. joining of dissimilar materials. (ii) A new generation of high average power laser technologies is becoming available, offering controllable trains of ultrashort (picosecond and femtosecond) pulses, with wavelengths selectable across the optical spectrum, from the infrared through to the ultra-violet. Such technology opens the door to a whole range of new laser-based production processes, where thermal effects no longer dominate, and which may replace less efficient 'conventional' processes in some current major production applications. These new developments are being rapidly exploited in other high-value manufacturing based economies such as Germany and the US. We argue that for the UK industry to take maximum advantage of these major advances in both laser material processing and machine technology there is an urgent requirement for an EPSRC Centre for Innovative Manufacturing in Laser-based Production Processes. This will be achieved by bringing together a multi-disciplinary team of leading UK researchers and key industry partners with the goal of exploiting 'tailored laser light'. Together with our industrial partners, we have identified 2 key research themes. Theme A focuses on Laser Precision Structuring, i.e. micro-machining processes, whilst Theme B is focused on joining and additive processes. Spanning these themes are the laser based manufacturing research challenges which fall into categories of Laser Based Production Process Research and Laser Based Machine Technologies, underpinned by monitoring and control together with material science. Research will extend from the basic science of material behaviour modelling and laser-material interaction processes to manufacturing feasibility studies with industry. The Centre will also assume an important national role. The Centre Outreach programme will aim to catalyse and drive the growth of a more effective and coherent UK LIM community as a strong industry/academia partnership able to represent itself effectively to influence UK/EU policy and investment strategy, to promote research excellence, and growth in industrial take-up of laser-based technology, expand UK national knowledge transfer and marketing events and improve the coordination and quality of education/training provision.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G037256/1
    Funder Contribution: 7,190,020 GBP

    Dramatic progress has been made in the past few years in the field of photonic technologies, to complement those in electronic technologies which have enabled the vast advances in information processing capability. A plethora of new screen and projection display technologies have been developed, bringing higher resolution, lower power operation and enabling new ways of machine interaction. Advances in biophotonics have led to a large range of low cost products for personal healthcare. Advances in low cost communication technologies to rates now in excess of 10 Gb/s have caused transceiver unit price cost reductions from >$10,000 to less than $100 in a few years, and, in the last two years, large volume use of parallel photonics in computing has come about. Advances in polymers have made possible the formation of not just links but complete optical subsystems fully integrated within circuit boards, so that users can expect to commoditise bespoke photonics technology themselves without having to resort to specialist companies. These advances have set the scene for a major change in commercialisation activity where photonics and electronics will converge in a wide range of systems. Importantly, photonics will become a fundamental underpinning technology for a much greater range of users outside its conventional arena, who will in turn require those skilled in photonics to have a much greater degree of interdisciplinary training. In short, there is a need to educate and train researchers who have skills balanced across the fields of electronic and photonic hardware and software. The applicants are unaware of such capability currently.This Doctoral Training Centre (DTC) proposal therefore seeks to meet this important need, building upon the uniqueness of the Cambridge and UCL research activities that are already focussing on new types of displays based on polymer and holographic projection technology, the application of photonic communications to computing, personal information systems and indeed consumer products (via board-to-board, chip to chip and later on-chip interconnects), the increased use of photonics in industrial processing and manufacture, techniques for the low-cost roll-out of optical fibre to replace the copper network, the substitution of many conventional lighting products with photonic light sources and extensive application of photonics in medical diagnostics and personalised medicine. Many of these activities will increasingly rely on more advanced systems integration, and so the proposed DTC includes experts in computer systems and software. By drawing these complementary activities together, it is proposed to develop an advanced training programme to equip the next generation of very high calibre doctoral students with the required expertise, commercial and business skills and thus provide innovation opportunities for new systems in the future. It should be stressed that the DTC will provide a wide range of methods for learning for students, well beyond that conventionally available, so that they can gain the required skills. In addition to lectures and seminars, for example, there will be bespoke experimental coursework activities, reading clubs, roadmapping activities, secondments to collaborators and business planning courses.Photonics is likely to become much more embedded in other key sectors of the economy, so that the beneficiaries of the DTC are expected to include industries involved in printing, consumer electronics, computing, defence, energy, engineering, security, medicine and indeed systems companies providing information systems for example for financial, retail and medical industries. Such industries will be at the heart of the digital economy, energy, healthcare and nanotechnology fields. As a result, a key feature of the DTC will be a developed awareness in its cohorts of the breadth of opportunity available and a confidence that they can make impact therein.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.