Powered by OpenAIRE graph

Delcam (United Kingdom)

Delcam (United Kingdom)

15 Projects, page 1 of 3
  • Funder: UK Research and Innovation Project Code: EP/E002323/1
    Funder Contribution: 17,848,800 GBP

    The Innovative Manufacturing and Construction Research Centre (IMCRC) will undertake a wide variety of work in the Manufacturing, Construction and product design areas. The work will be contained within 5 programmes:1. Transforming Organisations / Providing individuals, organisations, sectors and regions with the dynamic and innovative capability to thrive in a complex and uncertain future2. High Value Assets / Delivering tools, techniques and designs to maximise the through-life value of high capital cost, long life physical assets3. Healthy & Secure Future / Meeting the growing need for products & environments that promote health, safety and security4. Next Generation Technologies / The future materials, processes, production and information systems to deliver products to the customer5. Customised Products / The design and optimisation techniques to deliver customer specific products.Academics within the Loughborough IMCRC have an internationally leading track record in these areas and a history of strong collaborations to gear IMCRC capabilities with the complementary strengths of external groups.Innovative activities are increasingly distributed across the value chain. The impressive scope of the IMCRC helps us mirror this industrial reality, and enhances knowledge transfer. This advantage of the size and diversity of activities within the IMCRC compared with other smaller UK centres gives the Loughborough IMCRC a leading role in this technology and value chain integration area. Loughborough IMCRC as by far the biggest IMRC (in terms of number of academics, researchers and in funding) can take a more holistic approach and has the skills to generate, identify and integrate expertise from elsewhere as required. Therefore, a large proportion of the Centre funding (approximately 50%) will be allocated to Integration projects or Grand Challenges that cover a spectrum of expertise.The Centre covers a wide range of activities from Concept to Creation.The activities of the Centre will take place in collaboration with the world's best researchers in the UK and abroad. The academics within the Centre will be organised into 3 Research Units so that they can be co-ordinated effectively and can cooperate on Programmes.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/J007870/1
    Funder Contribution: 132,630 GBP

    The major global challenges the world is facing today need to be addressed in the multifaceted context of economy, society and the environment. Manufacturing industries account for a significant part of the world's consumption of resources and generation of waste. Worldwide, the energy consumption of manufacturing industries grew by 61% from 1971 to 2004 and account for nearly a third of global energy usage. Manufacturing industries are also responsible for 36% of global dioxide (CO2) emission. This is in stark contrast to its image, during the last two centuries, as a particularly valuable sector of the economy. Manufacturing remains a very important component of wealth creation, but concerns over pollution, scarcity of resources and climate change may soon lead to manufacturing being seen as a 'necessary evil' rather than a desirable capability. Manufacturing must move away from simply addressing the transformation of raw materials into value-added products at the right time with the right cost and quality and instead consider the demands of society as a whole, addressing environmental and social concerns as well as economic ones. This requires that manufactured goods consume less energy, demand fewer scarce materials, and exhibit less toxicity at every stage of their life cycle - a life cycle that should itself be extended, such that products are more useful, for longer. Nowadays, manufacture is global, so is environment impact. To be effective, the improvement of the environmental impact and sustainability of manufacturing operations requires a broadly based multi-disciplinary and global approach that is unlikely to arise locally. Global complexities result from inherently different local legislation, technologies and capabilities - a situation that is costly in economic and environmental terms. An international network addressing sustainable global manufacturing is particularly important at this time. The current economic downturn has provided a short 'breathing space' where manufacturing companies are able to focus upon profitability through efficiency improvements rather than concentrating purely on output. In addition to examining pollution and wastes, Chinese industries were troubled by resource shortages during the recent economic boom, while Europe faced difficulties with landfill cost and availability, and in compliance with legislation such as the Waste Electrical and Electronic Equipment Directive, and the End of Life Vehicles Directive. Aiming at contributing to sustainable manufacturing and low carbon economy, a multi-disciplinary research and educational network would enable a collaborative interaction between academics in two important regions of the world, pooling knowledge on emerging trends, forthcoming legislation, technologies and best practices that support low carbon economy in the UK and in the world as a whole, achieved through the more efficient use of available resources, the deployment of more effective products and services, the salvage of components and systems at the end of life, and the adoption of timely, innovative sustainable manufacturing methodologies.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K014196/1
    Funder Contribution: 1,951,550 GBP

    Today's machines and products are so advanced in terms of their materials, form, construction, control and drive systems that they require expertise and resource that extends beyond the reach of even the world's largest organisations. As a consequence, the design, development and manufacture of, for example, a modern aircraft is undertaken by a large globally distributed network of organisations. While defining this network poses a design problem by itself, it is the challenge of managing such large, highly distributed, high value projects that is of upmost concern to industry presently. This is not only because of the recent spate of high profile cost overruns, delivery setbacks and collapsed projects, but also because of aspects of leakage of intellectual property, exposure to risk, and difficulties capturing design records, lessons learned, decisions and rationale. Engineering projects of the sort previously described are critically dependent upon two key toolsets. These are electronic communication tools (e.g. email) and digital objects (reports, CAD models and simulations). These communication tools and digital objects are fundamentally related. Engineers around the globe communicate electronically in order to create and evolve digital objects which are the basis for the design, manufacture, assembly, delivery and maintenance of products and machines. It is this relationship and co-evolution of communication and digital objects that lies at the heart of every engineering project, embodying not only the engineering work itself but also control of intellectual property, decision making, rationale and problem solving. For these reasons, it is proposed that, through an understanding of the relationship and co-evolution of communication and digital objects, it is possible to improve the management, control and performance of engineering projects. The vision of this research will be realised through a suite of ICT tools that embody new methods and approaches for capturing and analysing the content and evolution of engineering communication and digital objects, and new methods and approaches for generating, representing, interacting with, and interpreting what are defined as signatures of in communications and digital objects. The term signature is used to represent a meaningful relationship between one or more dimensions of communication and/or digital objects at a point in time or over a period of time. The research programme firstly considers the two dimensions of communication and digital objects. The aim here is to characterise what are referred to as the "language of collaborative manufacturing" (content of communication) and "patterns of evolution of digital objects" (construction and changes to digital objects) and to explore means of classifying content and structure, and means of generating signatures. The programme then explores the relationship between the co-evolution of these two dimensions. Here the aim is to establish sets of signatures, relationships between signatures and patterns of signatures that embody meaning for improving aspects of collaborative engineering such as those previously stated. This phase then investigates means of representing and visualising the signatures/patterns. The third phase of the programme researches new methods and approaches for project stakeholders to interact and meaningfully interpret signature sets, relationships and patterns with the aim of providing continuous real-time feedback. Such capability will enable advance warning of issues, improved management, increased productivity and ultimately improved design and manufacture of the product. In addition to the three major phases, the programme has a research strand focussed on testing and validation of the new methods and approaches, and characterising best practice, as well as new ways of setting up and managing collaborative work which will be used as part of outreach and knowledge transfer activities.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K007432/1
    Funder Contribution: 318,944 GBP

    Shape-from-shading (SFS) is a classic problem in computer vision. It aims to estimate 3D surface shape from the variations in shading in a single photographic image. The fact that it recovers shape using only a single image makes SFS attractive to a wide range of applications, especially when other 3D imaging techniques such as stereo or depth scanners are difficult to apply. Example applications can be found in topography analysis of SAR (synthetic aperture radar) images, reconstruction of medical images, inspection of microelectronics, CAD systems, and the entertainment industry. However, despite over four decades research, SFS still remains a challenging problem which is underused in real world problems, due to a lack of robustness, and sometimes implausible results. A good solution is pressing and challenging. This project intends to develop a robust and practical SFS algorithm for accurate shape recovery from real-world images. The reasons for SFS's current poor performance on real-world images have several underlying causes. The first is that the classic assumptions of orthographic projection, Lambertian reflection, and simple lighting models are inaccurate for real-world surfaces. The second reason is that SFS is an underconstrained problem: the human visual system recovers shape not only from shading, but also from outlines, shadows, and prior experience. In computer vision, little work has considered the combination of shape from shading with other visual cues and human interactions. The third and largely overlooked reason is that many real surfaces are not smooth, and have detailed features. Most existing SFS algorithms only apply to images of smooth surfaces, and tend to over-smooth any features. Based on these observations, this project will integrate techniques from such areas as feature-aware image filtering, shape from line drawing, and user interaction, to achieve more accurate shape recovery from sophisticated real-world images. An interactive platform for SFS will be developed for realistic applications. The outcome of the research will be tested on various applications in CAD and computer vision: specifically, as part of the project, we will explore the applications to bas-relief generation, and face recognition.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/E001874/1
    Funder Contribution: 9,770,800 GBP

    The Cranfield IMRC vision is to grow the existing world class research activity through the development and interaction between:Manufacturing Technologies and Product/Service Systems that move UK manufacturing up the value chain to provide high added value manufacturing business opportunities.This research vision builds on the existing strengths and expertise at Cranfield and is complementary to the activities at other IMRCs. It represents a unique combination of manufacturing research skills and resource that will address key aspects of the UK's future manufacturing needs. The research is multi-disciplinary and cross-sectoral and is designed to promote knowledge transfer between sectors. To realise this vision the Cranfield IMRC has two interdependent strategic aims which will be pursued simultaneously:1.To produce world/beating process and product technologies in the areas of precision engineering and materials processing.2.To enable the creation and exploitation of these technologies within the context of service/based competitive strategies.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.