United States Air Force Research Laboratory
United States Air Force Research Laboratory
4 Projects, page 1 of 1
assignment_turned_in Project2021 - 2025Partners:University of Oxford, University of Stuttgart, Defence Science & Tech Lab DSTL, United States Air Force Research Laboratory, National Aeronautics and Space Administration +2 partnersUniversity of Oxford,University of Stuttgart,Defence Science & Tech Lab DSTL,United States Air Force Research Laboratory,National Aeronautics and Space Administration,Defence Science and Technology Laboratory,Fluid Gravity Engineering (United Kingdom)Funder: UK Research and Innovation Project Code: MR/T041269/1Funder Contribution: 1,250,690 GBPWith my proposed research, I intend to enable future space exploration missions into our Solar System that have not been possible before. Re-entering spacecraft are exposed to extreme heat loads, which are mitigated by ablative heat shields. However, the physical processes of the extreme high speed flow around the vehicle, and the influence of the ablating heat shield on the flow are still not well understood and result in exorbitant safety margins for the heat shield mass. Heat shields become too heavy and prevent missions that suffer from high heat loads like planet exploration or sample return scenarios. I will use our new high-speed wind tunnel T6 to investigate these high-enthalpy flows experimentally, and upgrade T6 to a novel hybrid facility that enables hyper-velocity testing of models at flight temperatures that are made of real heat shield materials. T6 is newly built, commissioned in 2018, and is Europe's only facility to achieve the relevant high-speed flow conditions of up to 18 km/s. A plasma-generator will be integrated into the architecture of T6 to pre-heat models before they are exposed to the high-speed flow. This retains the characteristics of an ablation-flow coupling and allows for the first time a real ablating scaled model in an aerodynamically similar flow and enables the investigation of effects that were previously inaccessible and would make T6 the first of its kind world-wide. I plan to conduct three different types of experiments that target hypervelocity Earth re-entry: Shock layer radiation studies in a shock tube, sub-scale model testing of a re-entry capsule in a hypersonic flow field, and the upgrade of T6 to an entirely novel hybrid plasma-impulse facility. The normal shock formed in front of an entry capsule will be experimentally simulated through an equivalent shock travelling through a shock tube. The shock passes a window in the tube where it is interrogated by emission and absorption spectroscopy. This allows the spatially resolved measurement of temperatures, particle densities, and radiative heat flux. Emission measurements will be conducted with an experimental setup that is already in place, which I will extend to also include absorption spectroscopy. The Aluminium shock tube of T6 has the largest tube-diameter of current comparable facilities, which leads to a significant increase of measurement signal enabling new high accuracy data. I will target flow conditions that replicate high-speed Earth re-entry, such as encountered during the re-entry of the Japanese capsule Hayabusa. In addition, I will explore next generation mission scenarios for a Mars sample return case. The next step after the fundamental experiments of shock tube testing is moving to a full flow field around a model. The model will be equipped with surface heat transfer and pressure sensors, as well as ports for optical fibres coupled into a spectrograph. This experiment will allow the investigation of the chemically reacting flow around a real geometry and therefore represents an additional increase in complexity from the shock tube experiments. This will allow the direct comparison to a wealth of numerical simulations and direct measurements of the real flight that were captured during an observation mission. The final step in the methodology of this proposal is to bring high enthalpy ground testing to a new level. A plasma is generated and is expanded through a nozzle into the test section where the model is located. After sufficient plasma heating the model has reached flight temperature and starts to decompose. At this moment, the hyper-velocity flow is started, the plasma generator is switched off simultaneously, and the remaining plasma is flushed out by the incoming shock of the diaphragm burst. The subsequent flow now faces a model at flight temperature that reproduces important previously inaccessible effects like blowing of heat shield products, surface oxidation and surface recombination.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::71842da5f8bd381c6e664202e74a7204&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::71842da5f8bd381c6e664202e74a7204&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2012 - 2016Partners:Gooch & Housego (United Kingdom), COVESION LTD, Covesion (United Kingdom), Element Six (UK) Ltd, Stratophase Ltd +15 partnersGooch & Housego (United Kingdom),COVESION LTD,Covesion (United Kingdom),Element Six (UK) Ltd,Stratophase Ltd,University of Southampton,University of Southampton,Ocean Optics,DSTL Porton Down,Defence Science and Technology Laboratory,US Air Force Research Laboratory,Defence Science & Tech Lab DSTL,Element Six (United Kingdom),Gooch & Housego (United Kingdom),United States Air Force Research Laboratory,GOOCH & HOUSEGO PLC,Element Six Ltd (UK),Halma (United Kingdom),[no title available],Stratophase (United Kingdom)Funder: UK Research and Innovation Project Code: EP/J008052/1Funder Contribution: 1,135,910 GBPThis platform grant will underpin integrated photonics research in advanced laser sources, photonic circuits, and sensors, at the Optoelectronics Research Centre (ORC) at the University of Southampton, leveraging the recent investment of >£100M in the new Mountbatten Fabrication Complex. Photonic materials and device research has been the key driver of many disruptive advances in telecommunications, healthcare, data storage, display and manufacturing, and this platform grant will provide the group with the horizon and stability to build upon its international standing to explore new high-risk, high-reward research avenues. Integrated photonic materials and devices of the future will play a huge role in the next generation of cheaper, faster, greener, disposable, miniaturised and more versatile systems based on silica and silicon, glasses, crystal and polymer hosts, in both channel and planar geometries. The broad range of expertise within our group and our access to the unequalled brand-new planar fabrication facilities will allow us to fully explore this diverse research area. Impact will be realised through applications in compact kW-class waveguide lasers (new manufacturing techniques), pollution sensors (monitoring climate change), optical amplifiers and switches (high-speed data control), early threat detection devices (homeland security), and fast universally accessible disease screening (point-of-care medical diagnostics). Applications for the photonic materials, processes and devices developed during this platform grant will play a key role in fields of interest to society, Industry as well as university-based research and development, and will be pursued in collaboration with both existing and newly-identified partners during the programme.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3892d9973c52a6040a99b512a825a441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::3892d9973c52a6040a99b512a825a441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2023 - 2026Partners:Hoare Lea (United Kingdom), University of Lyon System, Deutsche WindGuard, STFC - Laboratories, University of Lyon +18 partnersHoare Lea (United Kingdom),University of Lyon System,Deutsche WindGuard,STFC - Laboratories,University of Lyon,STFC - LABORATORIES,Science and Technology Facilities Council,DOWTY PROPELLERS,Embraer (Brazil),Siemens Gamesa,Hoare Lea Ltd,University of Bristol,EMBRAER S.A.,University of Bristol,United States Air Force Research Laboratory,General Electric (United Kingdom),Vertical Aerospace Ltd,Siemens Gamesa,US Air Force Research Laboratory,DOWTY PROPELLERS,Vertical Aerospace Ltd,Hoare Lea Ltd,Deutsche WindGuardFunder: UK Research and Innovation Project Code: EP/X019284/1Funder Contribution: 684,477 GBPIt is well established that long-term exposure to aircraft and wind turbine noise is responsible for many physiological and psychological effects. According to the recent studies, noise not only creates a nuisance by affecting amenity, quality of life, productivity, and learning, but it also increases the risk of hospital admissions and mortality due to strokes, coronary heart disease, and cardiovascular disease. The World Health Organization estimated in 2011 that up to 1.6 million healthy life years are lost annually in the western European countries because of exposure to high levels of noise. The noise is also acknowledged by governments as a limit to both airline fleet growth, acceptability of Urban Air Mobility, operation and expansion of wind turbines, with direct consequences to the UK economy. With regards to aerodynamic noise, aerofoil noise is perhaps one of the most important sources of noise in many applications. While aerofoils are designed to achieve maximum aerodynamic performance by operating at high angles of attack, they become inevitably more susceptible to flow separation and stall due to changing inflow conditions (gusts, wind shear, wake interaction). Separation and stall can lead to a drastic reduction in aerodynamic performance and significantly increased aerodynamic noise. In applications involving rotating blades, the near-stall operation of blades, when subjected to highly dynamic inflows, gives rise to an even more complex phenomenon, known as dynamic stall. While the very recent research into the aerodynamics of dynamic stall has shown the complexity of the problem, the understanding of dynamic stall noise generation has remained stagnant due to long-standing challenges in experimental, numerical and analytical methods. This collaborative project, which includes contributions from strong industrial and academic advisory boards, aims to develop new understanding of dynamic stall flow and noise and develop techniques to control dynamic stall noise. The team will make use of the state-of-the-art experimental rigs, dedicated to aeroacoustics of dynamic stall and GPU-accelerated high-fidelity CFD tools to generate unprecedented amount of flow and noise data for pitching aerofoils over a wide range of operating conditions (flow velocity, pitching frequency/amplitude, etc.). The data will then be used to identify flow mechanisms that contribute to the different aerofoil noise sources at high angles of attack, including aerofoil unsteady loading and flow quadrupole sources, and detailed categorisation of dynamic stall regimes. A set of new frequency- and time-domain analytical tools will also be developed for the prediction of dynamic stall noise at different dynamic stall regimes, informed by high-fidelity experimental and numerical datasets. This project will bring about a step change in our understanding of noise from pitching aerofoils over a wide range of operations and pave the way to more accurate noise predictions and development of potential noise mitigation strategies.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::81c596026163190de9d30f940dcf1e21&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::81c596026163190de9d30f940dcf1e21&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2014 - 2023Partners:Defence Science and Technology Laboratory, Johnson Matthey, Massachusetts Institute of Technology, Imperial College London, EPFL +33 partnersDefence Science and Technology Laboratory,Johnson Matthey,Massachusetts Institute of Technology,Imperial College London,EPFL,United States Air Force Research Laboratory,Materials Design, Inc.,Element Six Ltd (UK),Culham Centre for Fusion Energy,US Air Force Research Laboratory,Defence Science & Tech Lab DSTL,Element Six (United Kingdom),Materials Design, Inc.,Baker Hughes (United Kingdom),Argonne National Laboratory,Rolls-Royce (United Kingdom),Massachusetts Institute of Technology,Element Six (UK) Ltd,BP (United Kingdom),Defence Science & Tech Lab DSTL,ANL,PSI,Rolls-Royce Plc (UK),Swiss Federal Inst of Technology (EPFL),Johnson Matthey (United Kingdom),Lawrence Livermore National Laboratory,Max Planck Institutes,LBNL,Rolls-Royce (United Kingdom),University of Pennsylvania,Max-Planck-Gymnasium,Baker Hughes Ltd,BP (UK),University of Pennsylvania,B P International Ltd,CCFE,Massachusetts Institute of Technology,Johnson Matthey PlcFunder: UK Research and Innovation Project Code: EP/L015579/1Funder Contribution: 4,411,440 GBPThe mission of the EPSRC CDT in Theory and Simulation of Materials (TSM) is to create a generation of scientists and engineers with the theoretical and computational abilities to model properties and processes within materials across a range of length- and time-scales. It aims to provide a multidisciplinary training to meet the need for versatile researchers capable of using the whole range of tools available to provide a holistic treatment of materials challenges relevant to industry and academe. The impact of materials on our economy is both vast in its scope and deep in its reach, since it is materials that place practical limits on the efficiency, reliability and cost of almost all modern technologies. These include: energy generation from nuclear and renewable sources; energy storage and supply; land-based and air transportation; electronic and optical devices; defence and security; healthcare; the environment. In recent years there have been significant advances in the predictive capability of computational tools for TSM. By providing fundamental understanding of underlying physical processes and mechanisms TSM is an indispensable pillar of modern research on materials. Computational materials science and engineering is changing how new materials are discovered, developed, and applied, from the macroscale to the nanoscale. Citation statistics show that research activity in TSM is growing at about twice the average rate for all fields. At the same time industrial demand for skills in TSM is also growing. A recent report presented evidence that a sizeable fraction of the 650 top companies worldwide by R&D spend in sectors relevant to materials have in-house staff working on TSM. The translation of TSM from academic inventors to industrial users has resulted from professional software development producing reliable tools with accessible interfaces. Training is a critical issue worldwide, both due to the limited computer programming skills of graduates and the multidisciplinary nature of research in materials. Many important phenomena in materials involve processes that take place over a range of length- and time-scales. However UK doctoral training in computational science typically focuses on single codes covering just one scale. There is an urgent need to train a new generation of doctoral students who are both confident and competent in using tools and theory across the scales from the level of electronic structure (physics and chemistry), through microstructure (materials science) to the continuum level (engineering). Versatile researchers like this are sought by industry because they can identify and use the right tools to treat problems comprehensively. The research theme of the TSM-CDT is therefore "bridging length- and time-scales". For their research projects students will have two supervisors working at complementary scales, normally from different departments, bringing together the perspectives of two disciplines on a common problem. This approach has already created new collaborations across nine departments at Imperial and further afield through the Thomas Young Centre, the London Centre for TSM. The CDT has adopted a 1+3 training model, consisting of a 12-month Master's in TSM in year 1 followed by the PhD in years 2-4. The aim of the Master's is to provide a rigorous training in theoretical methods and simulation techniques. It is multidisciplinary in nature, taught by staff from six departments and it is the only course of its kind in the UK. Cohort building is promoted by the Master's course, and the ethos of the CDT encourages collaboration and student ownership of the programme. The network provided by the cohort ensures that students appreciate the wider context of their research projects across disciplines. The student experience is further enhanced by bespoke professional skills courses, outreach activities, master classes and the option to work on projects with industry.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::382a0bceef41f75df44a21fa50ba7b15&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=ukri________::382a0bceef41f75df44a21fa50ba7b15&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu