Powered by OpenAIRE graph

BT plc

Country: United Kingdom
3 Projects, page 1 of 1
  • Funder: UK Research and Innovation Project Code: EP/H040536/1
    Funder Contribution: 5,997,920 GBP

    Energy efficient processes are increasingly key priorities for ICT companies with attention being paid to both ecological and economic drivers. Although in some cases the use of ICT can be beneficial to the environment (for example by reducing journeys and introducing more efficient business processes), countries are becoming increasingly aware of the very large growth in energy consumption of telecommunications companies. For instance in 2007 BT consumed 0.7% of the UK's total electricity usage. In particular, the predicted future growth in the number of connected devices, and the internet bandwidth of an order of magnitude or two is not practical if it leads to a corresponding growth in energy consumption. Regulations may therefore come soon, particularly if Governments mandate moves towards carbon neutrality. Therefore the applicants believe that this proposal is of great importance in seeking to establish the current limits on ICT performance due to known environmental concerns and then develop new ICT techniques to provide enhanced performance. In particular they believe that substantial advances can be achieved through the innovative use of renewable sources and the development of new architectures, protocols, and algorithms operating on hardware which will itself allows significant reductions in energy consumption. This will represent a significant departure from accepted practices where ICT services are provided to meet the growing demand, without any regard for the energy consequences of relative location of supply and demand. In this project therefore, we propose innovatively to consider optimised dynamic placement of ICT services, taking account of varying energy costs at producer and consumer. Energy consumption in networks today is typically highly confined in switching and routing centres. Therefore in the project we will consider block transmission of data between centres chosen for optimum renewable energy supply as power transmission losses will often make the shipping of power to cities (data centres/switching nodes in cities) unattractive. Variable renewable sources such as solar and wind pose fresh challenges in ICT installations and network design, and hence this project will also look at innovative methods of flexible power consumption of block data routers to address this effect. We tackle the challenge along three axes: (i) We seek to design a new generation of ICT infrastructure architectures by addressing the optimisation problem of placing compute and communication resources between the producer and consumer, with the (time-varying) constraint of minimising energy costs. Here the architectures will leverage the new hardware becoming available to allow low energy operation. (ii) We seek to design new protocols and algorithms to enable communications systems to adapt their speed and power consumption according to both the user demand and energy availability. (iii) We build on recent advances in hardware which allow the block routing of data at greatly reduced energy levels over electronic techniques and determine hardware configurations (using on chip monitoring for the first time) to support these dynamic energy and communications needs. Here new network components will be developed, leveraging for example recent significant advances made on developing lower power routing hardware with routing power levels of approximately 1 mW/Gb/s for ns block switching times. In order to ensure success, different companies will engage their expertise: BT, Ericsson, Telecom New Zealand, Cisco and BBC will play a key role in supporting the development of the network architectures, provide experimental support and traffic traces, and aid standards development. Solarflare, Broadcom, Cisco and the BBC will support our protocol and intelligent traffic solutions. Avago, Broadcom and Oclaro will play a key role in the hardware development.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/L01632X/1
    Funder Contribution: 3,784,390 GBP

    The CDT in Media and Arts Technology will train PhD students to become skilled researchers and practitioners at the intersection of science, technology, digital media and the arts. The proposed CDT builds on the outstanding success of Queen Mary's current Media and Arts Technology (MAT) programme, introducing new training elements in Design, Innovation and Materials and expanded industrial and international partnerships. It addresses all 3 of EPSRCS's Digital Economy themes, particularly Digitally Connected Citizens and many ICT themes, especially Next Generation Interaction Technologies, Data to Knowledge and ICT for Manufacturing; Digital Healthcare. MAT is firmly grounded in Britain's Digital Economy (DE), which contributes the biggest share of GDP in any g20 nation and is projected to increase by a third by 2016. The Creative Digital sector in East London, on Queen Mary's doorstep and known as Tech City, is the fastest growing DE cluster in the UK, outstripping Greater London and the UK for jobs growth since 2001. It now accounts for 48,500 jobs in over 3200 companies, ranging from micro-business and SMEs to global players like Ustwo and Last.fm, and is attracting inward investment from international players such as IBM, Facebook, and Google. The Creative Digital sector demands workers with a high degree of technical skill coupled with creative skills, able to work in multi-disciplinary teams: exactly the type of graduate MAT will produce. The MAT CDT has an established network of over 40 external partners including: large companies (BBC, IBM, Orange, Sony and Procter & Gamble) health organisations (Royal Hospital of Neurodisability) and Tech City SMEs (Cinimod, Lean Mean Fighting Machine, Ustwo, Playgen, United Visual Artists, Hide&Seek, Troika), cultural institutions (Barbican, Science Museum and V&A), and governmental bodies (UKTI, TCIO, DSTL and London & Partners). Many partners host students' Advanced Placement Project, provide data sets and technical resources, supervision and mentoring, and exposure to a wide range of markets and audiences. The CDT acts as a focus bringing together otherwise disparate external bodies who discover shared interests and values. Because DE is a key strategic area for QML, the university invests heavily in the area. The existing MAT CDT catalysed the formation of qMedia, a cross-Faculty Research Centre based in the School of Electronic Engineering and Computer Science, and continues to be at its core. qMedia includes the world leading Centre for Digital Music, the newly formed Cognitive Science Group, the Multimedia and Vision Group, and members of the Networks, Vision and Antennas Groups. In EECS alone, qMedia has >40 academics, 41 RAs, 102 PhD students and a portfolio of grants with a current value of over £21 million. The CDT led to a major expansion in Digital Media research and teaching at Queen Mary. It inspired the creation of both a MSc in Media and Arts Technology and a BSc(Eng) in Multimedia and Arts Technology. The University invested around £3M in 200m2 of facilities for the MAT CDT, including Media and Arts Technology Studios, CDT hub (work/meeting space), 'maker' workshops, and a multimedia IT suite for audio/video editing. In conclusion, the existing CDT and its proposed renewal brings value nationally, locally and to the university. It is also a major international beacon of excellence that has led to several international partnerships, particularly in USA and China.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/M023265/1
    Funder Contribution: 4,039,830 GBP

    The creative industries are crucial to UK social and cultural life and one of the largest and fastest-growing sectors of the economy. Games and media are key pillars for growth in the creative industries, with UK turnovers of £3.5bn and £12.9bn respectively. Research in digital creativity has started to be well supported by governmental funds. To achieve full impact from these investments, translational and audience-facing research activities are needed to turn ideas into commercial practice and societal good. We propose a "Digital Creativity" Hub for such next-step research, which will produce impact from a huge amount of research activity in direct collaboration with a large group of highly engaged stakeholders, delivering impact in the Digital Economy challenge areas of Sustainable Society, Communities and Culture and New Economic Models. York is the perfect location for the DC Hub, with a fast-growing Digital Creativity industry (which grew 18.4% from 2011 to 2012), and 4800 creative digital companies within a 40-mile radius of the city. The DC Hub will be housed in the Ron Cooke Hub, alongside the IGGI centre for doctoral training, world-class researchers, and numerous small hi-tech companies. The DC Hub brings: - A wealth of research outcomes from Digital Economy projects funded by £90m of grants, £40m of which was managed directly by the investigators named in the proposal. The majority of these projects are interdisciplinary collaborations which involved co-creation of research questions and approaches with creative industry partners, and all of them produced results which are ripe for translational impact. - Substantial cash and in-kind support amounting to pledges of £9m from 80 partner organisations. These include key organisations in the Digital Economy, such as the KTN, Creative England and the BBC, major companies such as BT, Sony and IBM, and a large number of SMEs working in games and interactive media. The host Universities have also pledged £3.3m in matched funding, with the University of York agreeing to hire four "transitional" research fellows on permanent contracts from the outset leading to academic positions as a Professor, a Reader and two Lecturers. - Strong overlap with current projects run by the investigators which have complementary goals. These include the NEMOG project to study new economic models and opportunities for games, the Intelligent Games and Game Intelligence (IGGI) centre for doctoral training, with 55+ PhDs, and the Falmouth ERA Chair project, which will contribute an extra 5 five-year research fellowships to the DC Hub, leveraging £2m of EC funding for translational research in digital games technologies. - A diverse and highly active base of 16 investigators and 4 named PDRAs across four universities, who have much experience of working together on funded research projects delivering high-impact results. The links between these investigators are many and varied, and interdisciplinarity is ensured by a group of investigators working across Computer Science, Theatre Film and TV, Electronics, Art, Audio Production, Sociology, Education, Psychology, and Business. - Huge potential for step-change impact in the creative industries, with particular emphasis on video game technologies, interactive media, and the convergence of games and media for science and society. Projects in these areas will be supported by and feed into basic research in underpinning themes of data analytics, business models, human-computer interaction and social science. The projects will range over impact themes comprising impact projects which will be specified throughout the life of the Hub in close collaboration with our industry partners, who will help shape the research, thus increasing the potential for major impact. - A management team, with substantial experience of working together on large projects for research and impact in collaboration with the digital creative industries.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.