Powered by OpenAIRE graph

SYMBIO

Country: France
9 Projects, page 1 of 2
  • Funder: European Commission Project Code: 101007166
    Overall Budget: 1,133,540 EURFunder Contribution: 998,991 EUR

    eGHOST will be the first milestone for the development of eco-design criteria in the European hydrogen sector. Two guidelines for specific FCH products (PEMFC stack and SOE) will be completed and the lessons learnt will be integrated in the eGHOST White Book, a reference guidance book for any future eco-design project of FCH systems. eGHOST aims to support the whole FCH sector. Therefore, it addresses the eco-(re)design of mature products (PEMFC stack) and those emerging with TRLs around 5 (SOE) in such a way that sustainable design criteria can be incorporated since the earliest stages of the product development. eGHOST will go a step beyond the current state of the art of eco-design by incorporating eco-efficiency assessment, i.e. combining environmental and economic decision-making tools, and social life cycle assessment to determine the social impacts of the products. Therefore, eGHOST proposes a sustainable (re)design looking at minimizing the economic, environmental and social impacts of the products along their life cycle. Other innovation will be the use of prospective approach for the life cycle thinking tools used to assess the products performance, i.e. to determine the impacts of all the life cycle stages of the product at the time of its occurence. This is required to get valid information of those products at early stages of development. The European Commission considers eco-design as a key factor to fulfil its commitment to a climate-neutral and circular economy in 2050 as identified in different documents (EU Green Deal, New Industrial Strategy for Europe, Circular Economy Directive…). eGHOST will contribute to positioning FCH in this context by developing the first preparatory study of a hydrogen product under the guiding principles of the Eco-design Directive. As well, eGHOST will improve the understanding of FCH technologies as a sustainable investment under the EU Taxonomy, and will enhance Corporate Social Responsibility studies.

    more_vert
  • Funder: European Commission Project Code: 671438
    Overall Budget: 62,308,200 EURFunder Contribution: 32,000,000 EUR

    Hydrogen Mobility Europe (H2ME) brings together Europe’s 4 most ambitious national initiatives on hydrogen mobility (Germany, Scandinavia, France and the UK). The project will expand their developing networks of HRS and the fleets of fuel cell vehicles (FCEVs) operating on Europe’s roads, to significantly expand the activities in each country and start the creation of a pan-European hydrogen fuelling station network. In creating a project of this scale, the FCH JU will create not only a physical but also a strategic link between the regions that are leading in the deployment of hydrogen. The project will also include ‘observer countries’ (Austria, Belgium and the Netherlands), who will use the learnings from this project to develop their own hydrogen mobility strategies. The project is the most ambitious coordinated hydrogen deployment project attempted in Europe. The scale of this deployment will allow the consortium to: • Trial a large fleet of FCEVs in diverse applications across Europe - 214 OEM FCEVs (Mercedes and Toyota) and 125 fuel cell range-extended vans (Symbio collaborating with Renault) will be deployed • Deploy 29 state of the art refuelling stations, using technology from the full breadth of Europe’s hydrogen refuelling station providers. The scale will ensure that stations will be lower cost than in previous projects and the breadth will ensure that Europe’s hydrogen station developers advance together • Conduct a real world test of 4 national hydrogen mobility strategies and share learnings to support other countries’ strategy development • Analyse the customer attitude to the FCEV proposition, with a focus on attitudes to the fuelling station networks as they evolve in each country • Assess the performance of the refuelling stations and vehicles in order to provide data of a sufficient resolution to allow policy-makers, early adopters and the hydrogen mobility industry to validate the readiness of the technology for full commercial roll-out.

    more_vert
  • Funder: European Commission Project Code: 826204
    Overall Budget: 2,962,680 EURFunder Contribution: 2,962,680 EUR

    Current PEMFC stack technologies for automotive applications show limitations in performance, durability and production cost which are primary challenges to reach mass production and fuel cell commercialization. It is obvious that filling the gap between present State Of the Art performances and expected targets will not be possible by an incremental evolution of the present PEMFC technology as deployed today in first commercial cars. Thus, it is necessary to identify, develop and validate a more innovative, disruptive approach including new materials and processes to have a chance to reach these ambitious challenges. In this perspective, the DOLPHIN project is exploring an unconventional, highly innovative route towards a newly designed cell architecture featuring a Dual-Core Single Repeat Unit (DC-SRU). Thanks to smart approaches in the fields of ‘Process Integration’, ‘Interfaces Quality’ and ‘Materials Efficiency’, DOLPHIN will deliver a light-weight & compact fuel cell and stack architecture with low (mass/charge) transport resistances inside the fuel cell core. Mechanically strong and corrosion resistant structures with redesigned and more coherent cell-internal interfaces will delay the activation of major ageing mechanisms and failures occurrence hence increasing system reliability to a level compatible with automotive durability targets. Finally, by triggering an original concept relying on two integrated multi-functional cores and two architectures (w/o GDM) of increasing level of disruptiveness, DOLPHIN will finally deliver a reinvented process scheme with projected stack production costs less than 20 €/kW. DOLPHIN will in that sense address drastic fuel cell stack requirements for the automotive industry and beyond. It consists in another step forward toward the large-scale deployment of environmentally friendly vehicles, while also participating to the increase in European competitiveness, industrialisation and self-sufficiency in energy.

    more_vert
  • Funder: European Commission Project Code: 779565
    Overall Budget: 2,748,200 EURFunder Contribution: 2,748,200 EUR

    ID-FAST aims at supporting and promoting the deployment of Proton Exchange Membrane Fuel Cell (PEMFC) technologies for automotive applications through the development of Accelerated Stress Tests (AST) together with a methodology allowing durability prediction, thus accelerating the introduction of innovative materials in next generation designs. The project is founded and focused on two main points: degradation mechanisms understanding and durability prediction improvement via the development and validation of specific ASTs and associated transfer functions. Degradation investigations will be based on consolidated data (objects with known history and ageing data) from both real systems tested in cars and ID-FAST test program to ensure relevant analysis of failure modes and performance losses together with a mean to validate the developed methodology. Investigation of stressors impact on components degradation and performance losses will give access to the accelerating factor for each single mechanism AST. Thanks to the expertise of partners, understanding will be ensured by advanced ex-situ and in-situ characterisations to identify and quantify components degradation phenomena, and by modelling and multi-scale simulation tools to investigate the impact of various stressors and to relate causes to performance losses. Combined AST protocols will be developed and validated with regard to their capability to actually reduce testing time and their relevance assessed by correlation to real world ageing. The methodology developed will allow prediction of stack lifetime and thus will be valuable for the whole automotive fuel cell community. To achieve its objectives, ID-FAST will benefit from the strong expertise of 8 partners (4 research centres, 1 university, 1 SME and 2 large companies) all along the value chain, and from an Advisory Group gathering industrial companies from components manufacturers to end-users, as well as recognised laboratories from USA and Japan.

    more_vert
  • Funder: European Commission Project Code: 779589
    Overall Budget: 9,760,020 EURFunder Contribution: 4,993,850 EUR

    REVIVE will significantly advance the state of development of fuel cell refuse trucks, by integrating fuel cell powertrains into 15 vehicles and deploying them in 10 sites across Europe. The project will deliver substantial technical progress by integrating fuel cell systems from three major suppliers and developing effective hardware and control strategies to meet highly demanding refuse truck duty cycles. Specific work on standardisation will ensure that the lessons learned are applicable to the full range of OEMs supplying vehicles into the European market, helping to accelerate the introduction of next generation products. In parallel, the demonstration activities will greatly raise awareness of the viability of fuel cells as a solution to demanding heavy duty vehicle uses (and raise public awareness of hydrogen mobility more generally due to the visibility of the trucks). A successful demonstration of fuel cell trucks will have substantial impacts beyond the technical progress delivered by the project itself, as it will enable public authorities to continue implementing bold decarbonisation strategies by providing clear evidence that viable zero emissions solutions will exist for all vehicle types in the medium term. The project will also support the wider rollout of hydrogen mobility by introducing a further source of hydrogen demand that can improve the economics of existing and future refuelling station deployments, in turn facilitating the rollout of other vehicle types.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.