Powered by OpenAIRE graph

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE - DELEGATION REGIONALE RHONE-AUVERGNE

Country: France

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE - DELEGATION REGIONALE RHONE-AUVERGNE

407 Projects, page 1 of 82
  • Funder: French National Research Agency (ANR) Project Code: ANR-08-JCJC-0042
    Funder Contribution: 148,938 EUR

    Tsunamis generated by volcanic eruptions and flank instability appear as neglected hazards. They represent 25 % of all the fatalities directly attributable to volcanoes during the last 250 years. Their frequency, magnitude, and the processes leading to volcanic tsunamis remain poorly understood. As the source mechanisms are varied (pyroclastic flows, flank failures, calderas…) and differ from earthquake tsunamis, volcanic tsunamis may have different characteristics, induce waves of different scales and the existing numerical models are less satisfying than for earthquake tsunamis. Thus, it is actually difficult to correlate the characteristics of the source (volume, velocity, density etc.) and the intensity of the tsunami (wave length and height, propagation distance etc.). Volcanic tsunamis are rarely included in existing volcanic hazard maps and no methodology exists in the literature for estimating tsunami hazard from volcanic activity. The scientific aims and overall methodology of the project are organised in four tasks: 1. Characterize source mechanisms of volcanic tsunamis for three case-studies (1996 phreatomagmatic eruption of Karymsky Lake in Russia, 1883 caldera-forming eruption with pyroclastic flows of Krakatau in Indonesia, and massive flank failures of Reunion Island in France). 2. Map and analyse in details the sedimentary signature – deposits - related to these tsunamis. Their significance, variability and spatial distribution remain poorly understood, and such studies at a regional scale were never realized. 3. Test different numerical simulations for each case-study, both by varying the inputs of the models and their theory, and calibrate them with field data. 4. Propose a methodology coupling the previous tasks in a GIS (Geographic Information System) in order to include tsunamis in volcanic hazard assessments, leading major changes in existing estimations of hazards related to hundreds of volcanoes located near coasts or lakes (and considering the increasing population density along coasts all over the world, the implications are considerable). The project will be helded in Clermont-Ferrand, by Geolab (UMR 6042 CNRS), in the framework of a rising research teams on 'Morphogenic crises in costal environments'. Project leader is Raphaël Paris (CR2 CNRS). All tasks will be animated by young scientists and all the members have previous experience and publications on tsunamis, their sedimentary signature, numerical simulations, volcanic eruptions and instability.

    more_vert
  • Funder: French National Research Agency (ANR) Project Code: ANR-11-JSH2-0005
    Funder Contribution: 129,999 EUR

    Understanding the functional organization of speech processing in the brain remains a challenging issue for cognitive neuroscience and psychology. In particular, an old-standing debate exists as to whether speech perception relies on the processing of auditory information only or whether it requires mapping of sensory representations onto articulatory gestures that underlie speech production. In the last ten years, the renewal of interest for the motor theory of speech perception with the discovery of mirror neurons has inspired many researchers in cognitive neuroscience and evidence has rapidly accumulated in favour of an involvement of the motor system in the perception of speech sounds, particularly under compromised listening conditions. The degree to which this motor activation is necessary for speech perception however remains disputed. The ODYSSEE project will uncover the functional role of the speech production system in perceptual processes in typically developing children and in adults, by examining how articulatory regions collaborate with auditory regions during speech perception using state-of-the-art brain imaging technique, Magnetoencephalography (MEG). ODYSSEE particularly focuses on ‘distorted’ speech (i.e. time-compressed and natural fast speech) which may preferentially engage the motor system to constrain, refine and facilitate phoneme categorization by predicting the acoustic consequences of heard speech. ODYSSEE further emphasizes the need to examine the oscillatory dynamics of sensorimotor networks during speech perception, that is, not so much the activation of individual components of distributed neural networks but also crucially how these components dynamically interact and synchronize their oscillatory activity when we listen to distorted speech sounds. Investigating the dynamic orchestration of brain regions during distorted speech perception is fundamental to improve our understanding of the cerebral underpinnings of speech processing and will undeniably inspire future investigations on the neural bases of speech production and perception disorders.

    more_vert
  • Funder: French National Research Agency (ANR) Project Code: ANR-05-JCJC-0196

    La catalyse hétérogène est au c?ur de la chimie industrielle, mais le développement rationnel de procédés plus efficaces est ralenti en partie par le manque de compréhension de la structure des sites actifs de tels catalyseurs. Ces derniers n'ont en effet qu'une faible fraction de sites actifs. Un des buts de la chimie organométalliques de surface est de préparer des sites bien-définis, et l'objectif de cette équipe est de développer des outils analytiques nouveaux pour élucider la structure de sites actifs bien-définis et de comprendre leur évolution structurale lors d'une réaction catalytique. La détermination structurale par diffraction aux rayons X serait la méthode de choix en chimie moléculaire, mais elle est malheureusement restreinte à des produits cristallins, plus particulièrement sous la forme de mono-cristaux. Ainsi, cette méthode ne peut donc s'appliquer aux solides amorphes, qui sont les supports utilisés pour les catalyseurs hétérogènes, puisqu'ils doivent posséder une grande surface spécifique. Ainsi, notre objectif est de développer des méthodes RMN pour déterminer l'arrangement spatial des atomes autour d'un centre métallique ainsi que leur interaction avec leur environnement proche (interaction à plus longues distances). Certaines de ces méthodes RMN ont déjà été utilisées pour les solides massiques et les macromolécules biologiques, mais jamais pour la détermination structurale de sites actifs. Nous allons donc mettre en place et optimiser des séquences RMN pour étudier la structure de sites actifs, et les distances seront mesurées par la détermination des constantes dipolaires. Les systèmes étudiés dans ce projet ont quelques caractéristiques, qui les rendent difficile à étudier. Par exemple, la plupart du matériau correspond au support, et le site actif représente moins de 10% de l'échantillon, ce qui nuit gravement à l'obtention de spectre de bonnes qualités. Ceci sera partiellement résolue en préparant des catalyseurs sur des matériaux à haute surface spécifiques, qui garantiront la présence d'une charge maximale de sites actifs. Notre deuxième objectif est d'étudier l'évolution de la structure du site actif pendant une réaction catalytique en combinant diverses méthodes RMN afin de déterminer la connectivité entre les atomes et ainsi de résoudre la structure du système. Une telle approche nous permettra de déterminer la structure des sites actifs à un niveau moléculaire, ce qui nous donnera la possibilité de développer des catalyseurs par une approche structure-activité et ainsi de rationaliser le développement de procédés catalytiques.

    more_vert
  • Funder: French National Research Agency (ANR) Project Code: ANR-06-CORP-0022
    Funder Contribution: 250,000 EUR
    more_vert
  • Funder: French National Research Agency (ANR) Project Code: ANR-11-JSV7-0004
    Funder Contribution: 173,996 EUR

    The appearance of a dentition in Vertebrates has been a key-innovation in their evolution. It was followed by a tremendous diversification with modifications in number, shape, structure, implantation, growth, and replacement of teeth. These are studied especially in mammals, and also in fossil groups such as non-avian dinosaurs. Birds today stand alone with their lack of teeth. But between 146 and 65.5 million years before present, many groups of birds were toothed, at least partly. The fossil record of these taxa is exceptional and growing rapidly. In parallel, recent experiments have produced rudiments of teeth in mutant chicken embryos. In our project, we wish for the first time to investigate the phenotypes of teeth and dentitions in Mesozoic birds, and in experimental embryos, and to compare them with those of other archosaurs, and other tetrapods. We also wish to decipher the pathways and mechanisms of dental reductions and losses in birds, through an evo-devo approach. Third, we will investigate the nature and ontogenetic origin of the structures known as pseudo-teeth or bony teeth in two groups of extinct Cenozoic birds, which can shed new light on the evolution and loss of teeth in the entire class.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.