Victoria University of Wellington
FundRef: 100009495 , 501100001538 , 501100007722 , 501100005889 , 501100007721
Wikidata: Q1150437
ISNI: 0000000122923111
FundRef: 100009495 , 501100001538 , 501100007722 , 501100005889 , 501100007721
Wikidata: Q1150437
ISNI: 0000000122923111
Victoria University of Wellington
18 Projects, page 1 of 4
assignment_turned_in Project2022 - 2026Partners:University of Glasgow, Johnson Matthey plc, STFC - LABORATORIES, Heriot-Watt University, University of Glasgow +24 partnersUniversity of Glasgow,Johnson Matthey plc,STFC - LABORATORIES,Heriot-Watt University,University of Glasgow,Johnson Matthey,University of Bath,CARDIFF UNIVERSITY,Loughborough University,Johnson Matthey Plc,Heriot-Watt University,STFC - Laboratories,University of York,University of Edinburgh,University of Oxford,Manchester Institute of Biotechnology,University of Bath,University of Bristol,Victoria University of Wellington,Manchester Institute of Biotechnology,Science and Technology Facilities Council,Imperial College London,Cardiff University,Loughborough University,University of York,University of Bristol,University of Victoria,Cardiff University,University of StuttgartFunder: UK Research and Innovation Project Code: EP/W014378/1Funder Contribution: 682,674 GBPCatalysis is a key area of fundamental science which underpins a high proportion of manufacturing industry. Developments in catalytic science and technology will also be essential in achieving energy and environmental sustainability. Progress in catalytic science requires a detailed understanding of processes at the molecular level, in which computation now plays a vital role. When used in conjunction with experiment, computational modelling is able to characterise structures, properties and processes including active site structures, reaction mechanisms and increasingly reaction rates and product distributions. However, despite the power of computational catalysis, currently available methods have limitations in both accuracy and their ability to model the reaction environment. Also, it is practically difficult to model hybrid catalysts, which combine elements of different types of catalyst (e.g. unnatural metal centres incorporated in natural enzymes). Advances in technique are essential if the goal of catalysis by design is to be achieved. A powerful, practical approach to modelling catalytic processes is provided by Quantum Mechanical/Molecular Mechanical (QM/MM) methods, in which the reaction and surroundings are described using an accurate quantum mechanical approach, with the surrounding environment modelled by more approximate classical forcefields. QM/MM has been widely and successfully employed in modelling enzymatic reactions (recognised in the 2013 Nobel prize for Chemistry) but has an equally important role in other areas of catalytic science. The flagship ChemShell code, developed by the STFC team in collaboration with UCL, Bristol and other groups around the world, is a highly flexible and adaptable open source QM/MM software package which allows a range of codes and techniques to be used in the QM and MM regions (www.chemshell.org). The software has been widely and successfully used in modelling enzymatic reactions and catalytic processes in zeolites and on oxide surfaces. It will provide the ideal platform for the developments we are proposing which will take computational catalysis to the next level. These will include the use of high level QM techniques to achieve chemical accuracy, accurate modelling of solvent effects, calculation of spectroscopic signatures allowing direct interaction with experiment, and dynamical approaches for free energy simulations. Crucially, we will bring together methods from different spheres of computational catalysis to enable modelling of hybrid catalytic systems. We will develop flexible and rigorous methods that meet the twin challenges of high-level QM treatment for accuracy with the ability to sample dynamics of the reacting system. Together these methods will allow accurate and predictive modelling of catalytic reactions under realistic conditions. The project will also anticipate the software developments needed to exploit the next generation of exascale high performance computing. We will apply these new techniques to model the catalytic behaviour of a range of engineered heterogeneous, homogeneous and biomolecular catalysts, currently under study in the UK Catalysis Hub. The Hub supports experimental and computational applications across the whole UK catalysis community. This project will provide method development and software engineering that is not covered by the Hub, and thus will complement EPSRC investment in the Hub. Specific systems include methanol synthesis using homogeneous ruthenium complexes, Cu-based artificial enzymes for enantioselective Friedel-Crafts reactions, fluorophosphite-modified rhodium systems for hydroformylation catalysis of alkenes, and non-canonical substitutions in non-heme iron enzymes for C-H functionalisations. These highly topical and potentially industrially relevant systems will allow us both to test and exploit the new software, which promises a step change in our ability to model catalytic systems and reactions.
more_vert assignment_turned_in Project2015 - 2016Partners:Fugro Geoconsulting Limited, BIO, SHELL INTERNATIONAL EXPLORATION AND PRODUCTION BV, Geological Survey of Canada, ConocoPhillips Company +34 partnersFugro Geoconsulting Limited,BIO,SHELL INTERNATIONAL EXPLORATION AND PRODUCTION BV,Geological Survey of Canada,ConocoPhillips Company,Monterey Bay Aquarium Research Institute,Spanish National Research Council CSIC,CSIC,University of New Brunswick,Deltares-Delft,Proudman Oceanographic Laboratory,San Diego State University,Bangor University,ConocoPhillips Company,NOC (Up to 31.10.2019),Utrecht University,National Sun Yat-sen University,BU,Fugro (United Kingdom),Bedford Institute of Oceanography,Memorial University of Newfoundland,National Central University,University of New Brunswick,Shell Global Solutions International BV,Victoria University of Wellington,UST,MUN,Fugro (UK),Geological Survey of Canada,Shell International Exploration & Produc,UNIMI,MBARI,NOC,OIT,Fugro (Netherlands),National Sun Yat-sen University,University of Victoria,NCU,San Deigo State UniversityFunder: UK Research and Innovation Project Code: NE/M017540/1Funder Contribution: 333,858 GBPTurbidity currents are the volumetrically most import process for sediment transport on our planet. A single submarine flow can transport ten times the annual sediment flux from all of the world's rivers, and they form the largest sediment accumulations on Earth (submarine fans). These flows break strategically important seafloor cable networks that carry > 95% of global data traffic, including the internet and financial markets, and threaten expensive seabed infrastructure used to recover oil and gas. Ancient flows form many deepwater subsurface oil and gas reservoirs in locations worldwide. It is sobering to note quite how few direct measurements we have from submarine flows in action, which is a stark contrast to other major sediment transport processes such as rivers. Sediment concentration is the most fundamental parameter for documenting what turbidity currents are, and it has never been measured for flows that reach submarine fans. How then do we know what type of flow to model in flume tanks, or which assumptions to use to formulate numerical or analytical models? There is a compelling need to monitor flows directly if we are to make step changes in understanding. The flows evolve significantly, such that source to sink data is needed, and we need to monitor flows in different settings because their character can vary significantly. This project will coordinate and pump-prime international efforts to monitor turbidity currents in action. Work will be focussed around key 'test sites' that capture the main types of flows and triggers. The objective is to build up complete source-to-sink information at key sites, rather than producing more incomplete datasets in disparate locations. Test sites are chosen where flows are known to be active - occurring on annual or shorter time scale, where previous work provides a basis for future projects, and where there is access to suitable infrastructure (e.g. vessels). The initial test sites include turbidity current systems fed by rivers, where the river enters marine or freshwater, and where plunging ('hyperpycnal') river floods are common or absent. They also include locations that produce powerful flows that reach the deep ocean and build submarine fans. The project is novel because there has been no comparable network established for monitoring turbidity currents Numerical and laboratory modelling will also be needed to understand the significance of the field observations, and our aim is also to engage modellers in the design and analysis of monitoring datasets. This work will also help to test the validity of various types of model. We will collect sediment cores and seismic data to study the longer term evolution of systems, and the more infrequent types of flow. Understanding how deposits are linked to flows is important for outcrop and subsurface oil and gas reservoir geologists. This proposal is timely because of recent efforts to develop novel technology for monitoring flows that hold great promise. This suite of new technology is needed because turbidity currents can be extremely powerful (up to 20 m/s) and destroy sensors placed on traditional moorings on the seafloor. This includes new sensors, new ways of placing those sensors above active flows or in near-bed layers, and new ways of recovering data via autonomous gliders. Key preliminary data are lacking in some test sites, such as detailed bathymetric base-maps or seismic datasets. Our final objective is to fill in key gaps in 'site-survey' data to allow larger-scale monitoring projects to be submitted in the future. This project will add considerable value to an existing NERC Grant to monitor flows in Monterey Canyon in 2014-2017, and a NERC Industry Fellowship hosted by submarine cable operators. Talling is PI for two NERC Standard Grants, a NERC Industry Fellowship and NERC Research Programme Consortium award. He is also part of a NERC Centre, and thus fulfils all four criteria for the scheme.
more_vert assignment_turned_in Project2019 - 2026Partners:GEOMAR Helmholtz Ctr for Ocean Res Kiel, French Research Institute for Exploitation of the Sea, IFREMER, University of New Hampshire, MBARI +13 partnersGEOMAR Helmholtz Ctr for Ocean Res Kiel,French Research Institute for Exploitation of the Sea,IFREMER,University of New Hampshire,MBARI,Monterey Bay Aquarium Research Institute,National Sun Yat-sen University,Helmholtz Association of German Research Centres,Durham University,UNH,University of Victoria,Victoria University of Wellington,Durham University,National Taiwan University,NTUA,International Cable Protection Committee,IFM-GEOMAR,National Sun Yat-sen UniversityFunder: UK Research and Innovation Project Code: NE/S010068/1Funder Contribution: 643,714 GBPOur overall aim is to make fundamental step-changes in understanding of seafloor processes and hazards by developing and demonstrating novel sensor systems, which can form widespread and long-term listening networks. These low-cost and energy-efficient sensors comprise hydrophones (acoustic noise in water column) and geophones (ground shaking). Data will be returned via pop-up floats and satellite links, as has been pioneered by the highly successful Argo Project for water-column profile. This type of low-cost network could have unusually widespread applications for warning against threats to valuable seabed infrastructure, monitoring leaks from CCS facilities or gas pipelines, or for tsunami warning systems. Here we aim to answer fundamental questions about how submarine mass-flows (turbidity currents and landslides) are triggered, and then behave. These hazardous and often powerful (2-20 m/s) submarine events form the largest sediment accumulations, deepest canyons, and longest channel systems on our planet. Turbidity currents can runout for hundreds to thousands of kilometres, to break seabed cable networks that carry >95% of global data traffic, including the internet and financial markets, or strategic oil and gas pipelines. These flows play a globally important role in organic carbon and nutrient transfer to the deep ocean, and geochemical cycles; whilst their deposits host valuable oil and gas reserves worldwide. Submarine mass flows are notoriously difficult to measure in action, and there are very few measurements compared to their subaerial cousins. This means there are fundamental gaps in basic understanding about how submarine mass flows are triggered, their frequency and runout, and how they behave. Recent monitoring has made advances using power-hungry (active source) sensors, such as acoustic Doppler current profilers (ADCPs). But active-source sensors have major disadvantages, and cannot be deployed globally. They can only measure for short periods, are located on moorings anchored inside these powerful flows (which often carry the expensive mooring and sensors away), and they need multiple periods of expensive research vessels to be both deployed and recovered. We will therefore design, build and test passive sensors that can be deployed over widespread areas at far lower cost. These novel sensors will record mass-flow timing and triggers; and changes in front speed (from transit times), and flow power (via strength of acoustic or vibration signal). We will first determine how submarine mass flows are best recorded by hydrophones and geophones, and how that record varies with flow speed and type, or distance to sensor. Our preliminary work at three sites already shows that hydrophone and geophones do record mass-flows. Here we will determine the best way to capture that mass-flow signal, and to distinguish it from other processes. This work will form the basis for designing a new generation of low-cost (< £5k) smart sensors that return data without expensive surface vessels; via pop-up floats and satellite links. Advances in technology make this project timely, as they allow on-board data processing by smart hydrophones or geophones to reduce data volumes, which can be triggered to record for short periods at much higher frequency. We will field-test the new smart sensors, and thus demonstrate how they can answer major science questions. We seek to understand what triggers submarine flows, and how this initial trigger mechanism affects flow behaviour. In particular, how are submarine flows linked to hazardous river floods, storms or earthquakes, and hence how do they record those hazards? Do submarine flows in diverse settings show consistent modes of behaviour, and if not, what causes those differences? To do this, we will deploy these new sensors along the Congo Canyon (dilute river, passive margin, no cyclones) offshore Taiwan.
more_vert assignment_turned_in Project2020 - 2024Partners:Durham University, Montserrat Volcano Observatory, BBK, Victoria University of Wellington, Durham University +6 partnersDurham University,Montserrat Volcano Observatory,BBK,Victoria University of Wellington,Durham University,UCD,Birkbeck College,MVO,University of California Davis,University Savoie Mont Blanc,University of VictoriaFunder: UK Research and Innovation Project Code: NE/T000430/1Funder Contribution: 505,694 GBPVolcanism - the generation and eruption of molten rock from within the earth's interior - is one of the most visible manifestations of plate tectonics. Growth of the earth's crust occurs either when magma is stored and solidified within the crust, or is erupted at the earth's surface. Eruptive activity at subduction zones can be explosive and highly disruptive, and represents an important natural hazard, with implications for life, health and financial stability when it occurs. One of the major challenges facing volcanologists is the accurate forecasting of this eruptive behaviour. Abundant evidence of past volcanic activity shows that large volumes of magma can be erupted in a single event. However, geophysical techniques used to image below the earth's surface fail to distinguish large volumes of melt (magmatic liquid) stored within the crust. Instead, melt may be stored as "crystal mush", i.e. an accumulation of volcanic crystals separated by only small amounts of melt that is hard to image geophysically. However, a crystal mush with low melt content behaves like a solid and cannot be erupted. Researchers therefore suggest that the mush contains 'eruptible' lenses that have higher melt content, yet remain thin enough to be unresolved by geophysical techniques. If so, then wholesale spatial reorganisation of crystals and liquid in the whole mushy region could change its overall physical behaviour, such that it quickly becomes eruptible. In contrast, other scholars predict a prolonged existence of more liquid-rich (potentially eruptible) mush bodies within the crust. In this case, the lack of currently observed geophysical signals for large, melt-rich magma bodies may simply result from the ephemeral nature of magmatism. To make progress, more information about the longevity of eruptible mushy regions is essential. This proposal will develop a new method to determine the lifetime of melt-rich regions, enabling us to resolve this current conflict. Time 'chronology' information about volcanic systems is commonly recorded in the mineral zircon, which contains radioactive elements that are sensitive to time. Zircon chronology shows that crystal mushes can persist over long time periods (e.g. 100s kyr), but these measurements hold significant uncertainties. The lifetime of the more eruptible, melt-rich 'mobile magma' is much harder to investigate, because it occurs at higher temperatures where zircon may not be stable. However, this information is a critical link between geophysical observations, which record a snapshot of the state of the earth's crust, and volcanology, which records information about magmatic processes over very long times. This project will develop a new method to determine the lifetime of mobile magma crystallisation directly by analysing crystals that grow from melt at high temperatures. Specifically, we will relate the aspect ratio (length/ width) of the silicate mineral plagioclase, which grows from almost all subduction zone magmas, to the time available for crystallisation. Our preliminary work suggests a strong relationship between aspect ratio and time for water-rich, silica-rich magmas that erupt at subduction zones. Using high-temperature experiments, analysis of well-dated plagioclase crystals, and mathematical approaches, the team will derive a universal relationship that can be applied to all magmatic environments. We will apply the method to intermediate subduction zone volcanic systems that have recent geophysical information, in order to re-evaluate the architecture of the subterranean magma plumbing systems. Finally, we will integrate our crystal-scale observations with existing geophysical information and chronology datasets, to bring new insights into the distribution of melt and our ability to see it geophysically. This will lead to novel constraints on the identification, recognition and definition of mushy plumbing systems in future.
more_vert assignment_turned_in Project2012 - 2017Partners:UNIVERSITY OF WISCONSIN-MADISON, Penn State University College of Medicin, GFZ Potsdam - Geosciences, Helmholtz Association of German Research Centres, Inst of Geological & Nuclear Sciences +17 partnersUNIVERSITY OF WISCONSIN-MADISON,Penn State University College of Medicin,GFZ Potsdam - Geosciences,Helmholtz Association of German Research Centres,Inst of Geological & Nuclear Sciences,Otago Polytechnic University,University of Liverpool,NZIST,University of Auckland,University of Liverpool,GNS Science HQ (Lower Hutt),Victoria University of Wellington,GNS Science HQ (Lower Hutt),PSU,University of Otago,University of Bremen,University of Otago,Otago Polytechnic,GNS Science,Helmholtz Centre Potsdam,Pennsylvania State University,University of VictoriaFunder: UK Research and Innovation Project Code: NE/J024449/1Funder Contribution: 538,445 GBPThis proposal is the UK component of a major international campaign, the Deep Fault Drilling Project (DFDP) to drill a series of holes into the Alpine Fault, New Zealand. The overarching aim of the DFDP to understand better the processes that lead to major earthquakes by taking cores and observing a major continental fault during its build up to a large seismic event. The next stage of this project will be to drill and instrument a 1.5 km hole into the Alpine Fault. Earthquakes are major geohazards. Although scientists can predict where on the Earth's surface earthquakes are most likely to occur, principally along plate boundaries, we have only imperfect knowledge. We also don't know when earthquakes will occur. This is well illustrated by recent events on the South Island of NZ. Two earthquakes in Christchurch in Sept 2010 and Feb 2011 caused 181 deaths and £7-10 billion of damage (~10% of NZ GDP). Yet Christchurch had previously been considered of relatively low seismic risk. In contrast, the western side of the South Island is defined by the Southern Alps, a major mountain chain (>3700 m) formed along the Australian-Pacific Plate boundary. Until a few million years ago this plate boundary was a strike-slip fault like the San Andreas Fault in California, but subtle changes in plate motion has led to the collision of the Pacific and Australian Plates. This caused uplift of the mountains and due to very high rates of rainfall and erosion, rapid exhumation of rocks that until recently had been deep within the Earth. Although these plates are moving past each other at ~30 mm/y and the uplift rate in the Southern Alps approaches 10 mm/y, there has not been a major earthquake along the Alpine Fault in NZ's, albeit short, written history. However, there is palaeo-seismic evidence that major earthquakes do occur along the Alpine Fault with magnitude ~8 earthquakes occurring every 200-400 years, with the latest event in 1717 AD. Earthquake occur because stresses build-up within the relatively strong brittle upper crust. At greater depths (>15 km) rocks can flow plastically and plates can move past each other without building up dangerous stresses. On some faults, the brittle crust "creeps" in numerous small micro-earthquake events and this inhibits the build up of stress. Unfortunately there are few even micro-earthquake events along the Alpine Fault or surface evidence for deformation, suggesting that the stresses along this plate boundary have been building up since 1717 - if that stress was released in a single earthquake it would result in a horizontal offset across the fault of >8m! A major hindrance to earthquake research is a lack of fault rock samples from the depths where stresses build up before an earthquake. Fault rocks exposed at the surface tend to be strongly altered. The strength of fault rocks will depend on a number of factors include pressure, temperature and the nature of the materials, but also whether there are geothermal fluids present. The geometry of the Alpine Fault is special in that the fault rocks that were recently deforming at depth within the crust are exposed close to the surface. Also because of rapid uplift and erosion the local geothermal gradients are high and relatively hot rocks are near the surface. This results in a relatively shallow depth (5-8 km) for the transition from brittle to plastic behaviour. This provides a unique opportunity to drill into the fault zone to recover cores of the fault, to undertake tests of the borehole strata, and to install within the borehole instruments to measure temperature, fluid pressures, and seismic activity. Once core samples are recovered we will perform geochemical and microstructural analyses on the fault rocks to understand the conditions at which they were deformed. We will subject them to geomechanical testing to see how changes in their environment affects the strength of the rocks and their ability to accommodate stresses before breaking.
more_vert
chevron_left - 1
- 2
- 3
- 4
chevron_right
