Powered by OpenAIRE graph

GLA

Greater London Authority
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
62 Projects, page 1 of 13
  • Funder: UK Research and Innovation Project Code: EP/R045496/1
    Funder Contribution: 5,388,930 GBP

    Lot-NET considers how waste heat streams from industrial or other sources feeding into low temperature heat networks can combine with optimal heat pump and thermal storage technologies to meet the heating and cooling needs of UK buildings and industrial processes. Heating and cooling produces more than one third of the UK's CO2 emissions and represent about 50% of overall energy demand. BEIS have concluded that heat networks could supply up to 20% of building heat demand by 2050. Heat networks have previously used high temperature hot water to serve buildings and processes but now 4th generation networks seek to use much lower temperatures to make more sources available and reduce losses. Lot-NET will go further by integrating low temperature (LT) networks with heat pump technologies and thermal storage to maximise waste and ambient heat utilisation. There are several advantages of using LT heat networks combined with heat pumps: - They can reuse heat currently wasted from a wide variety of sources in urban environments, e.g. data centres, sewage, substation transformers, low grade industrial reject heat. - Small heat pumps at point of use can upgrade temperature for radiators with minimal electricity use and deleterious effect on the electricity grid. - Industrial high temperature waste can be 'multiplied' by thermal heat pumps increasing the energy into the LT network. - By operating the heat network at lower temperatures, system losses are reduced. Heat source availability is often time dependant. Lot-NET will overcome the challenges of time variation and how to apply smart control and implementation strategies. Thermal storage will be incorporated to reduce the peak loads on electricity networks. The wider use of LT heat networks will require appropriate regulation to support both businesses and customers and Lot-NET will both need to inform and be aware of such regulatory changes. The barrier of initial financial investment is supported by BEIS HNIP but the commercial aspects are still crucial to implementation. Thus, the aim of LoT-NET is to prove a cost-effective near-zero emissions solution for heating and cooling that realises the huge potential of waste heat and renewable energies by utilising a combination of a low-cost low-loss flexible heat distribution network together with novel input, output and storage technologies. The objectives are: 1. To develop a spatial and temporal simulation tool that can cope with dynamics, scale effects, efficiency, cost, etc. of the whole system of differing temperature heat sources, distribution network, storage and delivery technologies and will address Urban, Suburban and Exurban areas. 2. To determine the preferred combination of heat capture, storage and distribution technologies that meets system energy, environmental and cost constraints. Step change technologies such a chemical heat transport and combined heat-to-power and power-to-heat technologies will be developed. 3. To design, cost and proof of concept prototype (as appropriate) seven energy transformation technologies in the first two-three years. They consist of both electrically driven Vapour Compression and heat driven Sorption technologies. Priority for further development will be then given to those which have likely future benefits. 4. To determine key end use and business/industry requirements for timely adoption. While the Clean Growth Strategy and the Industrial Strategy Challenge Fund initially support future implementation, innovative business models will reduce costs rapidly for products or services that customers want to buy and use. Thus, engagement with stakeholders and end users to provide evidence of possible business propositions will occur. 5. To demonstrate/validate the integrated technologies applicable to chosen case studies. The range of heating, cooling, transformation and storage technologies studied will be individually laboratory tested interacting with a simulated netw

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/S016767/1
    Funder Contribution: 251,957 GBP

    As a result of global climate change, the UK is expected to experience hotter and drier summers and heatwaves are expected to occur with greater frequency, intensity and duration. According to recent climate change projections by the MetOffice, increases in mean daily temperatures could be up to 5.4 deg. C during the summer months and 4.2 deg. C during winter by 2070 under a High emissions scenario. In 2003, 2,091 heat-related deaths were reported in the UK alone as a result of the European heatwave, meaning future temperature increases could lead to a parallel rise in heat-related mortality. The UK also currently has a rapidly growing number of old people, with people aged 75 or over expected to account for 13% of the total population by 2035, compared with 8% in 2012. Older populations are more vulnerable to climate-induced effects as they are more likely to have underlying, chronic health complications, making them more vulnerable to heat stress. The 2003 heatwave demonstrated that older people in care settings are at the highest risk of heat-related mortality. People aged over 65 years spend more than 80% of their time in residential environments or care settings, and people aged over 85 years more than 90%. Therefore, the indoor environment is a huge moderator of heat exposure in older populations: Poor building design and the lack of effective heat management in care settings may contribute to increased indoor heat exposure with detrimental health impacts falling on the most vulnerable residents. Care facilities function as both a home for residents and a workplace for staff, meaning that the people sharing those spaces can have diverging needs and preferences making overheating prevention measures difficult to enforce. Interactions between staff and residents play an important role in preventing overheating in care settings and it has previously been noted that staff are often made to prioritise warmth due to wide recognition of the detrimental effect cold weather can have on old-age health, leading to overheating risks being overlooked. Understanding factors that contribute to indoor summertime overheating in care homes is crucial in developing methods to prevent overheating and the subsequent negative health impacts. Previous research by the applicants has indicated that care facilities are already overheating even under non-extreme summers, highlighting the need to develop timely prevention measures given the way temperatures are expected to rise in the UK over the next century. A key target for climate adaptation in care settings is to limit such risks by introducing passive cooling strategies via building design and occupant behaviour. Development of passive cooling strategies will reduce the likelihood of uptake of mechanical cooling, which would undermine government efforts to reduce greenhouse gas emissions. Therefore, the principal aim of the project is to undertake preliminary work to develop methods that will support a system of care provision in the UK that is adequately prepared for rising heat stress under climate change. The project will undertake pilot work in five care settings in the UK to monitor the thermal environment and conduct surveys with residents, frontline care staff and care home managers. Within these buildings, it will test novel approaches for understanding the comfort levels of the residents and relating this to the thermal environment. It will also test novel measurement techniques for assessing impact of heat on the health of the residents. Via detailed modelling work, it will then test methods to assess future overheating risks and to evaluate the effectiveness of overheating mitigation strategies. Throughout the project the work will bring together multidisciplinary research perspectives with those of care home practitioners and other stakeholders. Via these packages of work, plans for the large-scale project that is so urgently needed in this area will be developed.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/G057737/1
    Funder Contribution: 793,908 GBP

    Transport and residential location consume substantial quantities of energy whilst serving only to facilitate primary economic and societal activities. The relationship between urban form and travel patterns is inherently complex: it can be influenced by policy but through many individual personal responses rather than being subject to explicit control. Managing the energy used in transport is therefore an indirect process that works by influencing the amount and distance of travel, the means by which travel takes place, and the energy requirement of the resulting travel. Achieving this effectively requires an a full understanding of the many complex interacting social processes that generate the demand for travel and impinge on the ways in which it is satisfied in terms of its supply. The complexity sciences provide a framework for organising this understanding. In this project, we argue that changes in energy costs generate surprising and unanticipated effects in complex systems such as cities, largely because of the many order effects that are generated when changes in movement and the energy utilities used to sustain locations generate multiplier effects that are hard to trace and even harder to contain. For example, as energy costs increase, people eventually reach a threshold beyond which they cannot sustain their existing travel patterns or even their locations and then rapid shifts occur in their behaviour. When energy costs reduce, these shifts are by no means symmetrical as people switch out of one activity into another, by changing location as well as mode.At UCL, we have four groups of researchers building models of urban and transport systems which provide related perspectives on these responses to changing energy costs. Wilson pioneered the development of entropy maximising approaches to transport and location in which energy and travel costs are essential determinants of travel and his recent work in nesting these models within a dynamics that generate unanticipated effects is key to understanding the kinds of changes that are now being effected by changing energy costs. In a complementary way, these models can be provided with a much stronger rationale using recent theories of spatial agglomeration which date back to Turing but find their clearest expression in the work of Krugman (TK models). These models thus inform the Boltzman-Lotka-Volterra (BLV) models developed by Wilson. Translating these models into physical infrastructures involves explicit developments in network science and Zhou and Heydecker's models suggest ways in which energy costs might be reduced by linking physical networks to flows generated by the BLV and TK models. What we propose here is to extend and develop these three approaches, extending our existing operational land use transport model for Greater London (built as part of the Tyndall Centre's Cities programme) to enable our partners to explore 'what if ' questions involving changing energy costs on the city.The methodologies we will employ to explore these models involve nonlinearities that are caused by positive feedback effects in complex systems where n'th order multiplier effects are endemic. We will use phase space representations to visualise such changes and then implement these in the operational land use transport model which we will disseminate to our partners in the quest to pose significant policy questions. We intend to provide a series of tightly coupled deliverables to progress this science to the point where it is directly usable by policy makers and professionals. We will communicate our findings using various kinds of web-based services being developed under related projects. In this way, we will develop best practice based on best science. We believe that we can demonstrate the essential logic of complexity science to a much wider constituency in developing insights into these most topical questions of the changing cost of energy.

    more_vert
  • Funder: European Commission Project Code: 735977
    Overall Budget: 1,143,000 EURFunder Contribution: 1,143,000 EUR

    The fuel cells and hydrogen (FCH) industry has made considerable progress toward market deployment. However existing legal framework and administrative processes (LAPs) – covering areas such as planning, safety, installation and operation – only reflect use of incumbent technologies. The limited awareness of FCH technologies in LAPs, the lack of informed national and local administrations and the uncertainty on the legislation applicable to FCH technologies elicit delays and extra-costs, when they do not deter investors or clients. This project aims at tackling this major barrier to deployment as follows: • Systematically identifying and describing the LAPs applicable to FCH technologies in 18 national legal systems as well as in the EU proper legal system. • Assessing and quantifying LAP impacts in time and/or resource terms and identify those LAP constituting a legal barrier to deployment. • Comparing the 18 countries to identify best and bad practices • Raising awareness in the countries where a LAP creates a barrier to deployment. • Advocating targeted improvements in each of 18 countries + EU level • It will make all this work widely available through: (1) A unique online database allowing easy identification, description and assessment of LAPs by country and FCH application. (2) Policy papers by applications and by country with identification of best practice and recommendations for adapting LAP. (3) A series of national (18) and European (1) workshops with public authorities and investors. HyLAW sets up a National Association Alliance not just for the duration of the project, but for the long term consolidation of the sector under a single unified umbrella. By bringing together these national associations and all of Hydrogen Europe’s members, it’s the first time ever that the entire European FCH sector is brought together with a clear and common ambition.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R045518/1
    Funder Contribution: 7,047,660 GBP

    The long-term evolution of energy systems is set by the investment decisions of very many actors such as up-stream resource companies, power plant operators, network infrastructure providers, vehicle owners, transport system operators and building developers and occupiers. But these decisions are deliberately shaped by markets and incentives that have been designed by local and national governments to achieve policy objectives on energy, air-quality, economic growth and so on. It is clear then that government and businesses need detailed and dependable evidence of what can be achieved, what format of energy system we should aim for, what new technologies need to be encouraged, and how energy systems can form part of an industrial strategy to new goods and services. It is widely accepted that a whole-system view of energy is needed, covering not only multiple energy sectors (gas, heat, electricity and transport fuel) but also the behaviour of individuals and organisations within the energy consuming sectors such as transport and the built environment. This means that modelling energy production, delivery and use in a future integrated system is highly complex and analytically challenging. To provide evidence to government and business on what an optimised future system may look like, one has to rise to these modelling challenges. For electricity systems alone, there are established models that can optimise for security, cost and emissions given some assumptions (and sensitivities) and these have been used to provide policy and business strategy evidence. However, such models do not exist for the complex interactions of integrated systems and not at the level of fine detailed needed to expose particularly difficult operating conditions. Our vision is to tackle the very challenging modelling required for integrated energy systems by combining multi-physics optimising techno-economic models with machine learning of human behaviour and operational models emerging multi-carrier network and conversion technologies. The direction we wish to take is clear but there are many detailed challenges along the way for which highly innovative solutions will be needed to overcome the hurdles encountered. The programme grant structure enables us to assemble an exceptional team of experts across many disciplines. There are new and exciting opportunities, for instance, to apply machine learning to identify in a quantitative way models of consumer behaviour and responsiveness to incentives that can help explore demand-side flexibility within an integrated energy system. We have engaged four major partners from complementary sectors of the energy system that will support the programme with significant funding (approximately 35% additional funding) and more importantly engage with us and each other to share insights, challenges, data and case studies. EDF Energy provide the perspective on an energy retail business and access to smart meter trail data. Shell provide insights into the future fuels to be used in transport and building services. National Grid (System Operator) give the perspective of the use of flexibility and new service propositions for efficient system operations. ABB are a provider of data acquisition and control systems and provide industrial perspective of decentralisation of control. ABB have committed to providing substantial equipment and resource to build a verification and demonstration facility for decentralised control. We are also engaging examples of the new entrants, often smaller companies with potentially disruptive technologies and business models, who will engage and share some of their insights.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.