Powered by OpenAIRE graph

Ikerlan

118 Projects, page 1 of 24
  • Funder: European Commission Project Code: 101070679
    Overall Budget: 8,822,240 EURFunder Contribution: 8,822,240 EUR

    Today only very light AI processing tasks are executed in ubiquitous IoT endpoint devices, where sensor data are generated and access to energy is usually constrained. However, this approach is not scalable and results in high penalties in terms of security, privacy, cost, energy consumption, and latency as data need to travel from endpoint devices to remote processing systems such as data centres. Inefficiencies are especially evident in energy consumption. To keep up pace with the exponentially growing amount of data (e.g., video) and allow more advanced, accurate, safe and timely interactions with the surrounding environment, next-generation endpoint devices will need to run AI algorithms (e.g., computer vision) and other compute intense tasks with very low latency (i.e., units of ms or less) and energy envelops (i.e., tens of mW or less). NimbleAI will harness the latest advances in microelectronics and integrated circuit technology to create an integral neuromorphic sensing-processing solution to efficiently run accurate and diverse computer vision algorithms in resource- and area-constrained chips destined to endpoint devices. Biology will be a major source of inspiration in NimbleAI, especially with a focus to reproduce adaptivity and experience-induced plasticity that allow biological structures to continuously become more efficient in processing dynamic visual stimuli. NimbleAI is expected to allow significant improvements compared to state-of-the-art (e.g., commercially available neuromorphic chips), and at least 100x improvement in energy efficiency and 50x shorter latency compared to state-of-the-practice (e.g., CPU/GPU/NPU/TPUs processing frame-based video). NimbleAI will also take a holistic approach for ensuring safety and security at different architecture levels, including silicon level.

    more_vert
  • Funder: European Commission Project Code: 101096306
    Overall Budget: 3,476,520 EURFunder Contribution: 3,476,520 EUR

    HEFT considers that an energy efficient rare-earth synchronous motor is the best option for next generation high-power primary axle traction EVs and proposes a set of innovation challenges on electric synchronous motor configuration based on SiC inverters (direct cooling of rotor and stator, advance insulation for high voltage, multibarrier rotor topology, wave windings) and advanced materials (advanced GBD magnets, epoxy for magnet fixation, composite for motor housing, insulation resin). These innovations will result in a high-efficient and low-cost solution that will be validated on 2 motor topologies, which compared to two main reference automotive IPM commercial motors in Europe (VW ID.3 and FIAT500) will lead to next impacts: >800V, 20% reduction losses, >7 KW/kg and 42kW/l power density, 28% cheaper, 50-66% material savings, including 60% reduction of REE content and >80% REE recyclability rate. As this solution is still dependent on REE from China, HEFT will be aligned with the ERMA action plan towards a circular economy market of rare earth permanent magnets and suggests: one alternative magnet route (Ce based) and two REE recycled routes together with policies promotion towards the foundation of a European rare earths industry, capable of delivering 20% of EU demand by 2030. HEFT plans 8 WPs to implement these concepts, where 5 research partners will be essential for developing innovative ideas around the design-to-x approach, while strong companies (GKN, MAGNETI, VYNCOLIT) will ensure that HEFT results have a clear market orientation and fulfil the industry needs. HEFT plans to organise OEM workshops to ensure wide adoption of HEFT solutions, but also with policymakers to promote regulations towards the EU circular market that would help maintaining the leadership of EU companies, while increasing their competitiveness and job opportunities linked to the new circular business models.

    more_vert
  • Funder: European Commission Project Code: 101225866
    Funder Contribution: 5,999,510 EUR

    SHASAI targets the HW/SW security and AI-based high risk systems intersection, aiming to enhance the security, resilience, automated testing, and continuous assessment of AI systems. The rising interest in these systems makes them attractive targets for threat actors due to their complexity and valuable data. Ensuring the security of AI systems involves safeguarding AI models, datasets, dependencies, and securing the underlying HW/SW infrastructure. SHASAI takes a holistic approach of AI system security throughout their lifecycle stages. At requirement definition, SHASAI provides an enhanced risk assessment methodology for secure and safe AI. At design, SHASAI will propose secure and safe design patterns at SW and HW level to achieve trustworthy AI systems. During implementation, SHASAI provides tooling for a secure supply chain of the system by analyzing vulnerabilities in SW / HW dependencies, detecting poisoned data and backdoors in pretrained models, scanning for software vulnerabilities, hardening hardware platforms, and safeguarding intellectual property. At evaluation, SHASAI offers a virtual testing platform with automated attack and defense test suites to assess security against AI and infrastructure-specific threats. In operation, AI-enhanced security services continuously monitor the system, detect anomalies, and mitigate attacks using AI firewalls and attestation methods, ensuring availability and integrity. The feasibility of SHASAI methods and tools will be demonstrated in 3 real scenarios: 1. Agrifood industry: Cutting machines. 2. Health: Eye-tracking systems in augmentative and alternative communication. 3. Automotive: Tele-operated last mile delivery vehicle. Their heterogeneity and complementarity maximize the transferability of solutions. SHASAI will contribute to scientific, techno-economic, and societal impacts as it aligns with the CRA, EU AI Act, NIS2 and CSA, sharing and commercializing methods and tools to ensure trustworthy AI components.

    more_vert
  • Funder: European Commission Project Code: 783158
    Overall Budget: 49,767,700 EURFunder Contribution: 10,402,000 EUR

    REACTION will push through the first worldwide 200mm Silicon Carbide (SiC) Pilot Line Facility for Power technology. This will enable the European industry to set the world reference of innovative and competitive solutions for critical societal challenges, like Energy saving and CO2 Reduction as well as Sustainable Environment through electric mobility and industrial power efficiency. Establishing the first 200mm SiC Pilot Line in the world and developing the most innovative and cost competitive technology, this project will address mass-market applications like smart energy and smart mobility, and industrial. It will allow to meet the more and more increasing demand of requirements in terms of quality and cost constraint for next decade generation’s power electronics. The Project strength is the complete Pilot Line value chain implementation, integrating and optimizing partnership in the fields of SiC equipment developers, SiC process technologists, RTOs, and end users partners till the final applications context. This will allow to develop a full 8” SiC line ecosystem enhancing the competitiveness of EU- Industries down to the value chain in a market context where other countries today, such as the USA or Japan, are just starting to play on 6” SiC market. Innovative SiC power device Performances improvements, together with cost and size reductions, are the most relevant challenges addressed in the project that are expected to lead to a new stronger European supply chain for very compact SiC converters, from 600V to 2.2kV range, ideal for the addressed applications; the ambition is therefore to play a primary role towards excellence in Europe by a first generations of 8” SiC profitable Smart Mobility and Smart Energy products and components, primary access to IPs for the relevant essential capabilities, competitiveness of manufacturing in Europe.

    more_vert
  • Funder: European Commission Project Code: 224306
    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.