Sorbonne University
ISNI: 0000000123081657
FundRef: 501100005737
Sorbonne University
Funder
712 Projects, page 1 of 143
Open Access Mandate for Publications and Research data assignment_turned_in Project2021 - 2024Partners:Sorbonne UniversitySorbonne UniversityFunder: European Commission Project Code: 892653Overall Budget: 281,827 EURFunder Contribution: 281,827 EURThe Biological Carbon Pump (BCP) transfers atmospheric CO2, fixed by phytoplankton in the sun-lit upper ocean, as particulate organic carbon to the deep ocean. The BCP plays a key role in Earth’s climate by removing 10 Pg of carbon from surface waters each year, with the Southern Ocean (SO) pump representing 33% of the global BCP. Carbon export from the BCP has long been solely attributed to the gravitational sinking of large particles following the spring phytoplankton bloom. Conspicuous imbalances in ocean carbon budgets have recently challenged this long-lived paradigm. Several lines of observational evidence have demonstrated the importance of additional export pathways that transfer all classes of particles to depth at different times of the year. Physical transport of organic matter by vertical mixing or active transport by zooplankton vertical migration should now be considered as major components of the BCP. CAPTURE (CArbon PaThways in the soUtheRn ocEan) aims at developing a mechanistic and quantitative understanding of these BCP components using year-round and depth-resolved observations from heavily instrumented Biogeochemical Argo floats. We will address the interlinking of these components over complete annual cycles, introducing the novel concept of BCP seasonality. This multidisciplinary approach, combining physical oceanography, phytoplankton and zooplankton ecology and biogeochemistry, will fundamentally change our understanding of key climate-related processes and help close ocean carbon budgets. By providing a synoptic vision of the biogeochemical state of the SO and its capacity to store atmospheric CO2, CAPTURE will address a major societal challenge and assist decision-makers. The transfer of knowledge between all partners of this project, from both academic and industrial sectors, will enhance European scientific excellence and career prospects of the applicant.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::1fec8c527dc12cea13dc5f69c6522ce8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::1fec8c527dc12cea13dc5f69c6522ce8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2019 - 2022Partners:Sorbonne UniversitySorbonne UniversityFunder: European Commission Project Code: 842528Overall Budget: 196,708 EURFunder Contribution: 196,708 EURComputations in parallel environments, like the emerging Exascale systems, are usually orchestrated by complex runtimes that employ various strategies to uniformly and efficiently distribute computations and data. However, these strategies, pursuing excellent performance scalability, may also impair numerical reliability (accuracy and reproducibility) of final results due to the dynamic and, thus, non-deterministic execution as well as non-associativity of floating-point operations. Additionally, scientific computations frequently rely upon only one working precision for computing problems with various complexities, which leads to the significant underutilization of the floating-point representation or the lack of accuracy. The Robust project aims to address the issue of reliable and sustainable scientific computations through developing robust, energy-efficient, and high performing algorithmic solutions for underlying numerical linear algebra solvers and libraries as well as applying these solutions in applications and kernels at scale. The fellow, Roman Iakymchuk, is an expert in numerical linear algebra and high-performance computing and will collaborate with the research team of Prof. Stef Graillat at the Sorbonne University, who are experts in numerical analysis and computer arithmetic. This unique collaboration and combination of skill sets are crucial to embed numerical reliability and sustainability in algorithmic solutions for linear algebra operations and solvers. The derivation of novel robust algorithmic solutions, which will lead to either faster or more energy-efficient execution, will also grant a user an opportunity to specify the expected output accuracy of computations while ensuring optimal intermediate precisions. This ambitious research project in conjunction with formal training and bespoke mentoring will enhance the fellow's academic profile, research experience, and broaden skill set in numerical analysis and computer arithmetic.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::2a89e6c525dd9e783e84e88d35b996f5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::2a89e6c525dd9e783e84e88d35b996f5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in ProjectFrom 2022Partners:Sorbonne UniversitySorbonne UniversityFunder: French National Research Agency (ANR) Project Code: ANR-22-SS20-0038Funder Contribution: 132,600 EURAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=anr_________::46bf09412fcc43d041f636ddcfae1880&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=anr_________::46bf09412fcc43d041f636ddcfae1880&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2018 - 2020Partners:Sorbonne UniversitySorbonne UniversityFunder: European Commission Project Code: 793760Overall Budget: 185,076 EURFunder Contribution: 185,076 EURFocusing on the making of Angels is an innovative way to approach the religious fact in ancient Mediterranean. The idea of intermediary beings is widely spread in the human conception of the divine; however, it did not always exist in the terms we are used to. The current project aims to explore that long and complex construction whose turning point takes place in Late Antiquity, more specifically in the V-VIth c. CE. The legacy of Pagan angels inherited from the Classical world interacts with the other religions and schools of thought throughout the Empire (Judaism, Gnosticism, Neo-Platonism) to build the definition, function and image of Christian Angels which will in turn pass onto Byzantium, and towards Islam. This phenomenon mostly rises in the Eastern regions of the Empire (Egypt-Syria-Palestine). In the three most relevant languages to study the development of the concept, Angel means “messenger” (Greek aggelos; Coptic aggelos; Syriac ml’k’). The backbone of our research is the theorization of Angels as a hierarchical system which the Pseudo-Dionysius the Areopagite, chief theologian of the Orthodox Church, elaborates on the Medieties of the Neoplatonician Proclus (AD 412-485). This provides the base to evaluate the impact that such an intellectual shift had on material culture, more specifically for what concerns the status of images. Not only in texts but also on works of art of the period can one trace the conversion of the Pagan Erotes to some winged personifications which result as Christian Angels. How to make visible the invisible? The representation of Angels helps thinking the entire question of Aesthetics in Late Antiquity, a fascinating process of exchange, conflict and ultimately (re)appropriation of its own identity.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::ec419d140741583a9938985674d29f51&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::ec419d140741583a9938985674d29f51&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2022 - 2024Partners:Sorbonne UniversitySorbonne UniversityFunder: European Commission Project Code: 101030591Overall Budget: 196,708 EURFunder Contribution: 196,708 EUREnvironmental conditions in the Anthropocene are rapidly changing triggering important ecological shifts in the Earth system and approaching tipping-point levels faster than previously expected. Macrophytes are an important tipping element in the ocean, disproportionally contributing to climate regulation and in under global decline given the coexistence of multiple anthropogenic impacts. To date, most of the studies on macrophytes have focused on understanding their performance in relation to certain disturbances, but still few information exists about their overall capacity to mitigate global environmental change and their capacity to continue doing so in the future. This interdisciplinary project (SHIFT2SOLVE) comes timely at this aim addressing societal priorities for climate action and the efficiency of natural resources. The main objectives of the action are: 1) quantifying macrophytes’ capacity to buffer environmental change, 2) assessing macrophytes acclimatization and adaptive capacity, 3) forecast the resilience and mitigation capacity of macrophytes in the future based on IPCC climate scenarios and 4) use Unmanned Aerial Vehicles and machine learning to early identify ecosystem contractions at a landscape scale. These objectives will be accomplished by mixing surveys along natural gradients of temperature and ocean acidification (i.e. latitudinal gradients in the Western Mediterranean and natural CO2 vents), manipulative experiments in the field and in the laboratory, genetic analyses and mechanistic mathematical models based on ecophysiological processes. This project will importantly contribute to my career development and professional maturity increasing my independence as a researcher and the oportunities to continuing my research in Europe. Overall, the outcomes of the project will contribute to securing the maximum mitigation capacity possible associated with marine macrophytes, essential to preserve the resilience of the Earth System.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::3e4d740a22be8de2d91e66a82c21f67b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::3e4d740a22be8de2d91e66a82c21f67b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right