Powered by OpenAIRE graph
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
1,059 Projects, page 1 of 212
  • Funder: European Commission Project Code: 687866
    Overall Budget: 4,595,120 EURFunder Contribution: 3,869,880 EUR

    Multispectral Optoacoustic Tomography (MSOT) brings a revolution to bio-optical imaging. Being insensitive to photon scattering, MSOT dramatically improves upon conventional bio-optic barriers by enabling (1) three-dimensional high-resolution optical imaging deep inside tissues (several millimetres to centimetres), by (2) high-scalability, ranging from optical-resolution microscopy to acoustic-resolution optical mesoscopy and macroscopy and by (3) novel label-free anatomical, physiological and molecular contrast at the tissue and single-cell-level, based on spectrally-resolved optical absorption. MSOT, originally supported by an ERC Advanced Award (2008) (TUM: Prof. Ntziachristos), is already commercialized by iThera Medical for macroscopy with systems sold around the world for small animal imaging. In parallel, ERC MSOT funding developed a mesoscopic implementation, termed raster-scan optoacoustic mesoscopy (RSOM), which has demonstrated innovative imaging capacity at 1-5mm depths. Driven by leading dermatologists (TUM: Prof. Biedermann; SUR: Prof. Costanzo) and market leader SMEs in optoacoustic and ultrasound technology (iThera, Rayfos, Sonaxis), INNODERM will design and prototype a handheld, portable, scalable, label-free RSOM device for point-of care dermatology applications, based on recommendations developed under an ERC proof of concept grant (2013) on MSOT. INNODERM brings together key photonic & ultrasound technologies and will validate the technical and economic viability of RSOM in dermatology suites for fast diagnosis and skin disease monitoring. RSOM can go beyond the abilities of current optical or optoacoustic devices and offer a paradigm shift in dermatology imaging, substantiating successful business cases.

    more_vert
  • Funder: European Commission Project Code: 732410
    Overall Budget: 8,379,500 EURFunder Contribution: 8,000,000 EUR

    RobMoSys will coordinate the whole community’s best and consorted effort to build an open and sustainable, agile and multi-domain European robotics software ecosystem. RobMoSys envisions an integration approach built on-top-of, or rather around, the current code-centric robotic platforms, by means of the systematic application of model-driven methods and tools that explicitly focus on (system-of-) system integration. As proven in many other engineering domains, model-driven approaches are the most suitable approach to manage integration that is intended to be “all-inclusive” with respect to technologies and stakeholder groups. RobMoSys will enable the management of the interfaces between different roles (robotics expert, domain expert, component supplier, system integrator, installation and deployment, operation) and separated concerns in an efficient and systematic way by making the step change to a set of fully model-driven methods and tools for engineering robotics systems. RobMoSys will drive the non-competitive part of building the eco-system aiming at turning community involvement into active support for an ecosystem of professional quality and scope. It will provide, based on broad involvement via two Open Calls, important concretizations for many of the common robot functionalities (sensing, planning, control in the broad sense). It will fulfill two complementary missions: (1) establish a common methodology enabling a composition-oriented approach to address complexity in robotics and face the integration burden caused by type diversity, target diversity and platform diversity; (2) stimulate and boost an ecosystem of methodology-based toolchains that supports the interaction of separated roles. RobMoSys is designed for widest inclusion - from the very beginning and throughout the overall course of the project - of the expertise and body of knowledge of the robotics community and of related relevant technology and application domains (Tier-1 concept).

    more_vert
  • Funder: European Commission Project Code: 248629
    more_vert
  • Funder: European Commission Project Code: 101164744
    Overall Budget: 1,061,290 EURFunder Contribution: 1,049,290 EUR

    High-assay low-enriched uranium metal (HALEU) is a critical resource required for the operation of research reactors and the production of pharmaceutical radioisotopes. Its availability is essential for advancing nuclear energy safety, materials science, basic scientific research, and the performance of about 40 million nuclear medicine procedures worldwide each year. Until recently, EU has relied on Russia and the USA for its supply of HALEU. Russian supplies are expected to be unavailable for an extended period, and the future availability of US supplies remains uncertain: it is thus imperative for EU to establish its own HALEU production capacity. The PreP-HALEU initiative represents a preparatory phase aimed at producing essential components and evaluating the technical pathways for establishing this capacity in EU. This project consortium brings together all key stakeholders, including enrichment companies, fuel manufacturers, research organizations, and medical radioisotope producers. Through this collaborative effort, PreP-HALEU intends to: • Generate substantial technical, economic, and regulatory information to support the decision-making process. • Foster alignment among the countries and parties involved in establishing a EU HALEU capability as a shared asset. Within the framework of PreP-HALEU, the quantitative requirements for HALEU metal will be updated, and working groups will delve into enrichment, metallization, and transportation considerations. The integration of these elementary bricks will be extensively discussed to create a coherent project dynamic and consistently consolidate results into an executive summary, a key input for the decision-making phase. The PreP-HALEU project, initiated in response to the NRT01-11 call for proposals, is a cornerstone in the establishment of a EU production capacity for metal HALEU. It plays a pivotal role in securing activities in the fields of research, healthcare, and innovation throughout EU.

    more_vert
  • Funder: European Commission Project Code: 865710
    Overall Budget: 1,997,550 EURFunder Contribution: 1,997,550 EUR

    The biological engineering project EMcapsulins will create the first suite of multiplexed genetic reporters for electron microscopy (EM) to augment today’s merely structural brain circuit diagrams (connectomes) with crucial information on neuronal type and activation history. My team will generate this new toolbox based on genetically encoded nanocompartments of the prokaryotic ‘encapsulin’ family that we have recently shown to enable genetically controlled compartmentalization of multicomponent processes in mammalian cells. By encapsulating metal-organizing cargo proteins in the lumen of the semi-permeable encapsulin nanospheres, they serve as fully genetic EM gene reporters (EMcapsulins) that provide robust and spatially precise contrast by conventional EM in mammalian cells. To enable geometric multiplexing in EM in analogy to multi-color light microscopy, we will explore the large geometrical feature space of EMcapsulins to establish three core Functionalities: ① different shell structures and diameters, ② modular and tunable shell functionalizations, and ③ multiplexed and triggered cargo loading. We will combine these Functionalities to produce geometrically multiplexed EMcapsulin markers of neuronal identity in serial EM (Application ❶). We will also engineer EMcapsulin reporters for activity-dependent gene expression, calcium signaling, and synaptic activity that can ‘write’ geometrically encoded records of neuronal activation history into EM connectomics data (Application ❷). These ‘multi-color’ and modular EMcapsulin markers and reporters deliver the missing bridging technology between time-resolved light microscopy measurements of neuronal activation dynamics and structural EM connectomics data. EMcapsulin technology will convert structural to functional EM connectomes to enable a systematic analysis of how brains write molecular signaling dynamics into structural patterns to store information for later retrieval.

    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.