GEM
2 Projects, page 1 of 1
assignment_turned_in Project2011 - 2014Partners:University of Camerino, Nautes SpA, RICO, e-Lios, E.C.T. srl +37 partnersUniversity of Camerino,Nautes SpA,RICO,e-Lios,E.C.T. srl,AALTO,MEDICALPS,Marche Polytechnic University,INDESIT COMPANY S.P.A.,DIGITAL LIVING FINLAND OY,INRCA,IVES,SVIM - SVILUPPO MARCHE SPA SOCIETA UNIPERSONALE,I.T.C. SRL,VISTEK ISRA VISION,ASTERIA,CEA,SEHTA,Eczacibasi Saglik Hizmetleri Anonim sirketi,Laurea University of Applied Sciences,GORDION BILGI HIZMET LIMITED SIRKETI,OPEN SAS,ISTITUTO DI RIABILITAZIONE S. STEFANO S.R.L,SPES SOCIETA COOPERATIVA PER AZIONI,MARCHE REGION,ALV,HELSINKI REGION CENTER OF EXPERTISE UUDENMAAN OSAA,Aileden Biri Evde Bakım Merkezi,ELICA SPA,VT,FLORALIS,TEUCO GUZZINI SPA,AETHRA TELECOMMUNICATIONS,TÜBİTAK,Istanbul Metropolitan Municipality,MBA consulting,BILMED,COSMOB,BIRIM INC,GEM,SU,MECCANOFunder: European Commission Project Code: 266422more_vert Open Access Mandate for Publications and Research data assignment_turned_in Project2023 - 2027Partners:BEWARRANT, TUM, EnduroSat, Polytechnic University of Bari, SIGMA INGEGNERIA SRL +3 partnersBEWARRANT,TUM,EnduroSat,Polytechnic University of Bari,SIGMA INGEGNERIA SRL,TU/e,GEM,UCCFunder: European Commission Project Code: 101135749Overall Budget: 4,999,640 EURFunder Contribution: 4,999,640 EURInnovative ground-breaking technologies such as nano-satellite-based space navigation and autonomous navigation are currently hindered by the lack of compact, efficient sensing devices. The adoption of photonic integrated circuits (PICs) for these applications has been restrained by the difficulty of integrating complete photonic sensors without optical interface within the same chip. The aim of INPHOMIR project is to provide a competitive and independent European supply chain of monolithic PIC building-blocks, operating at near and mid-infrared wavelengths, by proposing the Indium Phosphide platform as a valid solution for a technological scale-up. The scientific activities will involve the validation of PICs with new ultralow loss waveguides and new mid-infrared active devices; and the first demonstration of advanced building blocks such as: extremely-high quality factor resonators at telecom (exploring optical loss compensation and slow light effect in photonic crystals), Hertz-level narrow-linewidth quantum cascade lasers and ultra-low-power sensitive heterodyne detectors at mid-infrared wavelengths. These advanced components will be employed to realise for the first time an integrated optical gyroscope and a dual-band mid-infrared FMCW lidar. These two novel sensors will be put together onto a multi-chip module board to validate a novel multi-sensorial unit with unique ranging and inertial sensing capabilities, to be exploited for aerospace missions of low-earth-orbit nano-satellites and self-driving drones. Thus, a consortium has been established, constituted by academic and industrial partners, to provide the necessary expertise and synergy in front-end (design, microfabrication) and back-end (packaging, test, sensor fusion) research activities as well as specifications definition and technological validation/exploitation of the developed use-cases. The proposed multi-sensor module will boost miniaturised and advanced technologies in leading EU industries.
more_vert
