Powered by OpenAIRE graph

Kobe University

Kobe University

Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
6 Projects, page 1 of 2
  • Funder: French National Research Agency (ANR) Project Code: ANR-19-CE43-0008
    Funder Contribution: 448,250 EUR

    One of the cornerstones of the 'Bioeconomy' will rest on our ability to exploit renewable carbon resources to produce environmental eco-friendly fuels and chemicals that will profitably replace those derived at present from fossil resources. The POLYDHB project is in frame with this endeavour. This project originality stands on previous works carried out by two partners of this proposal which have exploited synthetic biology toolbox combined to metabolic and enzymes engineering to construct a synthetic pathway that leads to the microbial production of a non-naturally metabolite 2,4-dihydroxybutyric acid (DHB) from renewable carbon sources (i.e. sugars). Initially conceived as a precursor for the synthesis of the methionine to target the field of animal nutrition, this molecule actually turns out to be a unique ‘green’ platform chemical for the production of other bio-based products with application in chemical and pharmaceutical industries. The purpose of the POLYDHB project is here to demonstrate that DHB can be used as an original non-natural monomer for the production of new bio-sourced and biodegradable polymers. The scientific and technical challenges of this project will be realized through three workpackages: (I) production of pure enantiomers and lactide /lactone derived from DHB, (II) development of a chemocatalytic process of (co)polymerisation of DHB and/or its lactone and lactide derivatives alone or with other monomers, and (III) conception of a microbial process for the synthesis of DHB-based polymers. In each of these workpackages, scientific risks have been identified and contingency solutions clearly proposed. To succeed in this objective, a multidisciplinary and complementary core of expert in the field of Systems and Synthetic Biology (LISBP, Toulouse), Polymer Chemistry (LCPO, Bordeaux) with the participation of a Japanese team expert in molecular biology of bio-sourced polymers has been set-up. Moreover, the strong commitment of the industrial partner Adisseo in this project is not solely justified by its indispensable position in mastering the chemical and microbial process for DHB production, but it is also an asset for the industrial exploitation of this molecule on markets other than nutrition animal that can be opened from the results obtained in this project. The ambition of POLYDHB project is to reach the technology readiness level of 4 within the 3 years period.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/R022275/1
    Funder Contribution: 521,877 GBP

    Accurate flow measurement in rivers is vital to build well calibrated, reliable simulation models able to predict accurately the timing and extent of floods, and also to provide the data needed for effective management of water resources in a river catchment. This project will develop a new method of acoustic wave holography to measure remotely the velocity, flow depth and bed characteristics within river channels. The proposed holography method records the pattern of reflected acoustic waves (the hologram) above a dynamic flow surface and uses this pattern to reconstruct the water surface wave field throughout a three-dimensional region of space. The project will use recent advances in computational fluid mechanics and turbulence theory. The underpinning concept is that the free surface of turbulent river flows is never flat and is always dynamically rough. There is overwhelming evidence that the 3-dimensional pattern of the free surface of a river flow is caused by the turbulence structures within the flow. These structures are generated at the river bed and rise to the free surface and express themselves in the form of a pattern of surface waves which propagate at a particular velocity which does not necessarily coincide with the mean surface water velocity. Therefore, the free surface wave pattern carries comprehensive information about the underlying hydrodynamic processes in the flow, including the flow velocity, depth, turbulence scale and intensity and bed roughness characteristics. This process is very complex and it has not been sufficiently studied in the past because of a lack of accurate and robust instruments and accurate fluid dynamics models to relate the free surface wave pattern to the flow structure beneath. Thus, there is now an opportunity to develop a clear understanding how the pattern observed on the free surface of a river flow and the underlying turbulence structures and bed surface roughness in fluvial environments interact. This new knowledge in the hydrodynamics of turbulent river flows combined with new acoustic holographic measurement capabilities will provide a paradigm shift in the accuracy, spatial resolution and speed of deployment of flow monitoring in rivers. In this respect, the proposed work has a very high degree of novelty in comparison to the broader research context of this area internationally. The proposal is timely because it will contribute significantly to the need for us to better understand our natural environment especially under extreme conditions and in the development of Robotics and Autonomous Sensor technologies. These technologies were outlined in a report by David Willetts as one of the "Eight Great Technologies" that should be promoted and developed by the UK. The Willetts' report also states a clear need for real time forecasting of rivers, better water resource management and autonomous surveillance vehicles which require accurate on-board sensing. Our project takes an important step towards providing technology to address these requirements. The new sensor technology will also enable new theoretical foundations to be developed in the areas of wave propagation, inverse problems, holography, signal processing and computational fluid dynamics.

    more_vert
  • Funder: UK Research and Innovation Project Code: NE/K000985/1
    Funder Contribution: 58,079 GBP

    The outer layer of the earth is composed of rigid tectonic plates, like a cracked eggshell. These plates slide around the surface of the planet over a weaker, hotter layer below. The transition from rigid plate to the mantle below is fundamental to plate tectonics and our existence on the planet. However, the definition of the plate, i.e., their thickness, defining mechanism, and degree of coupling to the layer below are not well-known. I will use global seismic imaging to understand the thickness and defining mechanism of the Earth's oceanic plates. The ocean plates cover 70% of Earth's surface, yet are rarely mapped at high resolution given the remoteness, and the difficulty and cost of deploying seismometers to the bottom of a 4 km deep ocean. I have developed a new methodology to map the plates in locations where station coverage is sparse, as it is beneath the oceans. I use the SS waveform, which is an S wave that has bounced once at Earth's surface. Subtle variations in the character of the SS wave give information on the depth and character of the base of the tectonic plate in the region of the bouncepoint. I will use a newly compiled global database (1990 - 2011) which is nearly 4TB in size, and represents about four-times the data in my previous investigations. The significance is that I will be have nearly perfect resolution across all ocean basins, enabling global comparisons and a unified view of the tectonic plate. The definition of the plate has implications for many processes that impact human existence. It has a fundamental control on how plates move. This includes the generation of earthquakes, volcanoes, and tsunamis. Therefore a better understanding will lead to better hazard assessment and mitigation of natural disasters. In addition, plate thickness and strength directly affects uplift and subsidence of the tectonic plate. These forces impact mountain building and sea level rise, and are therefore important factors in understanding climate change. The results from this study will change text books, and clarify fundamental questions. I will develop a better understanding of the definition of a tectonic plate, including its formation and evolution. Understanding the ocean plates is fundamental to any tectonic setting in that they likely play a large role in the formation of the continents. Overall, this work will deepen our understanding of plate tectonics.

    more_vert
  • Funder: French National Research Agency (ANR) Project Code: ANR-10-JTIC-0002
    Funder Contribution: 738,105 EUR
    more_vert
  • Funder: UK Research and Innovation Project Code: BB/I024798/1
    Funder Contribution: 48,422 GBP

    Abstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.

    more_vert
  • chevron_left
  • 1
  • 2
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.