University of Tsukuba
University of Tsukuba
Funder
13 Projects, page 1 of 3
assignment_turned_in Project2007 - 2010Partners:TIT, Okayama University, THERS, Nagoya University, Ritsumeikan University +8 partnersTIT,Okayama University,THERS,Nagoya University,Ritsumeikan University,Hiroshima Institute of Technology,University of Tsukuba,Tokyo Denki University,The Ritsumeikan Trust,Staffordshire University,Ritsumeikan University,University of Tsukuba,Staffordshire UniversityFunder: UK Research and Innovation Project Code: EP/E025250/1Funder Contribution: 158,082 GBPThe proposed new network will generate interdisciplinary research collaboration and bring together mechatronics/robotics researches from the UK and Japan, to share experiences and formalise discussions for defining a common strategy for future R&D and collaborations at all level of research, teaching and technology transfer. Such a network is vital if the different communities in Japan and UK are to work together for mutual benefit. The network will also act as a knowledge base from the existing mechatronics/robotics community to create a new research community in human adaptive mechatronics able to address the many common challenges (e.g. Pollution / CO2 issue, Aging population issue, etc) in UK and Japan. In particular, the network will explore a number of key challenges: such as a) Investigating the modelling of a man-machine system that explicitly includes all necessary functions of humans as machine operators with sufficient accuracy; b) Implementation of human adaptive behaviour in autonomous systems; c) Application of human adaptive mechatronics to upgrade UK high-tech products; d) Development of human adaptive mechatronics into biomedical applications; e) Development of mathematics to model and analysis human adaptive mechatronic processes in productions.
more_vert assignment_turned_in Project2008 - 2011Partners:Queen Mary University of London, University of Tsukuba, Rockefeller University, PSU, Rockefeller University +5 partnersQueen Mary University of London,University of Tsukuba,Rockefeller University,PSU,Rockefeller University,QMUL,Rockefeller University,University of Tsukuba,The University of Texas at Austin,Penn State University College of MedicinFunder: UK Research and Innovation Project Code: EP/E049257/1Funder Contribution: 292,976 GBPComplex system often exhibit a dynamics that can be regarded as superpositionof several dynamics on different time scales.A simple example is a Brownian partice that moves in an inhomogeneousenvironment which exhibits temperature fluctuations in space and time on a relatively large scale. There is a superposition of two relevant stochastic processes,a fast one given by the velocity of the particle and a much slower onedescribing changes in the environment. It has become common to call thesetypes of systems 'superstatistical' since they consist of a superposition of twostatistics, a fast one as described by ordinary statistical mechanicsand a much slower one describing changes of the environment. The superstatistics is very general and has been recently applied to a variety of complex systems, including hydrodynamicturbulence, pattern forming nonequilibrium systems, solar flares, cosmic rays,wind velocity fluctuations, hydro-climatic fluctuations, share price evolution,random networks and random matrix theory.The aim of the research proposal is twofold.On the theoretical side, the aim is to develop a generalisedstatistical mechanics formalism that describes a large variety of complexsystems of the above type in an effective way. Rather thantaking into account every detail of the complex system, one seeksfor an effective description with few relevant variables. For thisthe methods of thermodynamics are generalised:One starts with more general entropy functionsthat take into account changes of the environment(or, in general, large-scale fluctuations of a relevant system parameter) as well. An extended theory also takes into account how fast the local system relaxes to equilibrium,thus describing finite time scale separation effects.On the applied side, the aim is to apply the above theory to a large variety of time series generated by different complexsystems (pattern forming granular gases, brain activityduring epileptic seizures, earthquake activity in Japan and California, evolutionof share price indices, velocity differences in turbulent flows).It will be investigated which superstatistical phenomena are universal(i.e. independent of details of the complex system studied) and whichare specific to a particular system. Possible universality classeswill be extracted directly from the data. Application-specific modelswill be developed to explain the observed probability distributionsof the slowly varying system parameters.
more_vert assignment_turned_in Project2014 - 2023Partners:Polytechnic University of Milan, KU Leuven, Rice University, SCR, Fraunhofer +80 partnersPolytechnic University of Milan,KU Leuven,Rice University,SCR,Fraunhofer,NOC,Science and Technology Facilities Council,MMI Engineering Ltd,Universidade de Sao Paulo,Russian Academy of Sciences,UKCEH,Nuclear Decommissioning Authority,NNL,National Nuclear Laboratory (NNL),Rolls Royce (International),HYDRA Operations,University of Sao Paolo,Technical University of Kaiserslautern,University of Zurich,NDA,IBM (United Kingdom),National Tsing Hua University,ETH Zurich,UMD,Merseyside Fire & Rescue Service,OvGU,HYDRA Operations,University of Sao Paulo,University of Liverpool,European Centre for Soft Computing,FNA (Financial Network Analytics),Arup Group Ltd,STFC - LABORATORIES,IBM UNITED KINGDOM LIMITED,Rolls Royce (International),MMI Engineering Ltd,MZ Intelligent Systems,Ural Works of Civil Aviation,NERC CEH (Up to 30.11.2019),University of Liverpool,UZH,SMRE,Proudman Oceanographic Laboratory,IBM (United Kingdom),NCK Inc,DataScouting,Merseyside Fire & Rescue Service,Lloyd's Register EMEA,University of Tsukuba,EPFZ,RAS,DPU,Rice University,Nuclear Decommissioning Authority,FHG,LR IMEA,European Centre for Soft Computing,Arup Group,Cartrefi Conwy,AREVA GmbH,Health and Safety Executive,IBM (United States),LMS UK,Aero DNA,STFC - Laboratories,University of Leuven,University of Maryland,Schlumberger Cambridge Research Limited,DataScouting,National Tsing Hua University,Munich Re Group,Munich Re,University of Leuven,AREVA GmbH,Health and Safety Executive (HSE),Aero DNA,Cartrefi Conwy,LMS UK,NCK Inc,Lloyd's Register,Ural Works of Civil Aviation,Ove Arup & Partners Ltd,University of Tsukuba,Dalian University of Technology,NOC (Up to 31.10.2019)Funder: UK Research and Innovation Project Code: EP/L015927/1Funder Contribution: 4,159,160 GBPRisk is the potential of experiencing a loss when a system does not operate as expected due to uncertainties. Its assessment requires the quantification of both the system failure potential and the multi-faceted failure consequences, which affect further systems. Modern industries (including the engineering and financial sectors) require increasingly large and complex models to quantify risks that are not confined to single disciplines but cross into possibly several other areas. Disasters such as hurricane Katrina, the Fukushima nuclear incident and the global financial crisis show how failures in technical and management systems cause consequences and further failures in technological, environmental, financial, and social systems, which are all inter-related. This requires a comprehensive multi-disciplinary understanding of all aspects of uncertainty and risk and measures for risk management, reduction, control and mitigation as well as skills in applying the necessary mathematical, modelling and computational tools for risk oriented decision-making. This complexity has to be considered in very early planning stages, for example, for the realisation of green energy or nuclear power concepts and systems, where benefits and risks have to be considered from various angles. The involved parties include engineering and energy companies, banks, insurance and re-insurance companies, state and local governments, environmental agencies, the society both locally and globally, construction companies, service and maintenance industries, emergency services, etc. The CDT is focussed on training a new generation of highly-skilled graduates in this particular area of engineering, mathematics and the environmental sciences based at the Liverpool Institute for Risk and Uncertainty. New challenges will be addressed using emerging probabilistic technologies together with generalised uncertainty models, simulation techniques, algorithms and large-scale computing power. Skills required will be centred in the application of mathematics in areas of engineering, economics, financial mathematics, and psychology/social science, to reflect the complexity and inter-relationship of real world systems. The CDT addresses these needs with multi-disciplinary training and skills development on a common mathematical platform with associated computational tools tailored to user requirements. The centre reflects this concept with three major components: (1) Development and enhancement of mathematical and computational skills; (2) Customisation and implementation of models, tools and techniques according to user requirements; and (3) Industrial and overseas university placements to ensure industrial and academic impact of the research. This will develop graduates with solid mathematical skills applied on a systems level, who can translate numerical results into languages of engineering and other disciplines to influence end-users including policy makers. Existing technologies for the quantification and management of uncertainties and risks have yet to achieve their significant potential benefit for industry. Industrial implementation is presently held back because of a lack of multidisciplinary training and application. The Centre addresses this problem directly to realise a significant step forward, producing a culture change in quantification and management of risk and uncertainty technically as well as educationally through the cohort approach to PGR training.
more_vert assignment_turned_in Project2016 - 2024Partners:University of Edinburgh, RIKEN, RIKEN, Shiga University of Medical Sciences, RIKEN +4 partnersUniversity of Edinburgh,RIKEN,RIKEN,Shiga University of Medical Sciences,RIKEN,University of Tsukuba,Kyoto University,University of Tsukuba,Shiga University of Medical SciencesFunder: UK Research and Innovation Project Code: BB/N022599/1Funder Contribution: 47,064 GBPAbstracts are not currently available in GtR for all funded research. This is normally because the abstract was not required at the time of proposal submission, but may be because it included sensitive information such as personal details.
more_vert assignment_turned_in Project2007 - 2007Partners:University of Tsukuba, University of Tsukuba Department of Computer ScienceUniversity of Tsukuba,University of Tsukuba Department of Computer ScienceFunder: Swiss National Science Foundation Project Code: 116935Funder Contribution: 1,500more_vert
chevron_left - 1
- 2
- 3
chevron_right
