Powered by OpenAIRE graph

ZSW

Zentrum für Sonnenenergie- und Wasserstoff-Forschung Baden-Württemberg
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
50 Projects, page 1 of 10
  • Funder: European Commission Project Code: 101069738
    Overall Budget: 7,979,280 EURFunder Contribution: 7,979,280 EUR

    SiGNE will deliver an advanced lithium-ion battery (LIB) aimed at the High Capacity Approach targeted in this work programme. Specific objectives are to (1) Develop high energy density, safe and manufacturable Lithium ion battery (2) optimise the full-cell chemistry to achieve beyond state of art performance (3) Demonstrate full-cell fast charging capability (4) Show high full-cell cycling efficiency with >80% retentive capacity (5) Demonstrate high sustainability of this new battery technology and the related cost effectiveness through circular economy considerations and 2nd life battery applications built upon demonstrator and (6) Demonstrate high cost-competitiveness, large-scale manufacturability and EV uptake readiness. SiGNE will achieve these objectives by incorporation of 30% Si as a composite where it is electrically connected to the Graphite in nanowire form. This will realise a volumetric ED of >1000 Wh/L when pre-lithiated and paired with a Ni- rich NCM cathode optimised to deliver 220 mAh/g. This will be further enabled by a specifically designed electrolyte to maximise the voltage window and enable stable SEI formation. A sustainable fibre based separator with superior safety features s in terms of thermal and mechanical stability will be developed. SiGNE will establish the viability of volume manufacturing with production quantities of battery components manufactured by project end. The battery design and production process will be optimised in a continuous improvement process through full cell testing supported by modelling to optimise electrode and cell designs through manufacture as a 21700-type cylindrical cell and prototype testing at by OEMs. (SOH) monitoring across the entire battery lifecycle will optimise safety 2nd use viability. SIGNE will go significantly beyond SoA with recovery of anode, cathode and electrolyte components. In this circular economy approach recovered materials will be returned to the relevant work package to produce new electrodes.

    more_vert
  • Funder: European Commission Project Code: 325335
    more_vert
  • Funder: European Commission Project Code: 245142
    more_vert
  • Funder: European Commission Project Code: 779475
    Overall Budget: 3,499,870 EURFunder Contribution: 3,499,870 EUR

    HYDRAITE project aims to solve the issue of hydrogen quality for transportation applications with the effort of partners from leading European research institutes and independent European automotive stack manufacturer, together with close contact and cooperation with the European FCH industry. In this project, the effects of contaminants, originating from the hydrogen supply chain, on the fuel cell systems in automotive applications are studied. As an outcome, recommendations for the current ISO 14687 standards will be formulated based on the technical data of the impurity concentrations at the HRS, FC contaminant studies under relevant automotive operation conditions, and inter-compared gas analysis. The methodology for determining the effect of contaminants in automotive PEMFC system operation will be developed by six leading European research institutes in co-operation with JRC and international partners. In addition, a methodology for in-line monitoring of hydrogen quality at the HRS, as well as sampling strategy and methodology for new impurities, gas, particles and liquids, will be evolved. Three European laboratories will be established, capable of measuring all of the contaminants according to ISO 14687 standards, and provide a strong evidence on the quality and reliability on their result. Beyond the project, the three laboratories will offer their services to the European FCH community. In addition, a network of expert laboratories will be set, able to provide qualitative analysis and the first analytical evidence on the presence or absence of these new compounds with potential negative effect to the FCEV. The efficient dissemination and communication improves the resulting data and input for the recommendations for ISO standards of hydrogen fuel. The project and its results will be public, to boost the impact of the project outcomes and to enhance the competitiveness of the European FC industry.

    more_vert
  • Funder: European Commission Project Code: 325275
    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.