NRCan
Funder
12 Projects, page 1 of 3
assignment_turned_in Project2023 - 2026Partners:University of Edinburgh, Natural Resources Canada, ULiège, University of Liverpool, University of Liverpool +4 partnersUniversity of Edinburgh,Natural Resources Canada,ULiège,University of Liverpool,University of Liverpool,UNIFR,NRCan,Danish Meteorological Institute (DMI),Danish Meteorological Institute DMIFunder: UK Research and Innovation Project Code: NE/X000435/1Funder Contribution: 605,887 GBPThe Greenland Ice Sheet is the world's largest single source of barystatic sea-level rise (c.20% total rise) and more than half of the mass lost annually from the ice sheet comes from surface melt-water runoff. This proportion, and its magnitude, is rising with continued climate warming but future projections, and societal planning for sea level rise impacts, are undermined by a fundamental source of uncertainty. Across the vast majority of the accumulation area of the Greenland Ice Sheet, we do not know how much of the water produced from surface melting refreezes in underlying firn (i.e. multi-year snow) or becomes runoff. When the surface of an ice sheet melts, the density and temperature of underlying snow, firn and impermeable ice combine to determine whether melt refreezes in the underlying snow and firn, or becomes runoff to the ocean. If meltwater can percolate to depth (e.g. up to c.10 m) and access cold, low density firn, it can refreeze creating a significant buffer between climate change and sea-level rise. Alternatively, if melt encounters shallow impermeable ice layers (themselves created by previous refreezing) within relatively warm firn, melt cannot reach the cold firn and more melt will become runoff. The difference between these two scenarios alone could double ice sheet runoff by the middle of the 21st century. We rely on model simulations of surface melt, refreezing and runoff to accurately project the future contribution of the Greenland Ice Sheet to sea level rise. However, model-based estimates of the annual refreezing capacity of the ice sheet over the last six decades differ dramatically and undermines their ability to converge towards a reliable range of future projections. A major cause of uncertainty follows from the quite different assumptions that models make about ice layer permeability that dramatically alters the ice sheet refreezing capacity. If ice layers in firn are assumed to be impermeable (permeable), they will inhibit (allow) meltwater percolation to depth, diminish (maintain) refreezing capacity, increase (decrease) runoff and hence increase (decrease) projected global sea level rise. Without an improved treatment of ice layer permeability, existing surface mass balance models cannot provide reliable projections of the future refreezing capacity of, and melt-water runoff from, the Greenland Ice Sheet, leaving the ice sheet's future contribution to sea level rise highly uncertain. Firstly, we need to know the physical and thermal conditions of snow and firn that control the effective permeability of relatively thin ice layers (<0.5m thick) since within our warming climate these are increasingly determining the depth to which meltwater can percolate and hence control the refreezing capacity of the underlying firn. To this end we will undertake temperature-controlled laboratory experiments, systematically simulating and monitoring snow/firn/ice melt/refreezing/runoff. Secondly, we need to model the effective permeability of ice layers in snow and firn and their sensitivity to changing external and internal conditions since these together control how much melt refreezes or becomes runoff. For this, our lab work will inform novel developments to modelling to simulate measured arctic ice cap snowpack evolution. Finally we will incorporate improved ice layer permeability criteria within ice sheet scale models of the Greenland Ice Sheet to generate more accurate simulations of runoff and refreezing during melt extremes and improve harmonisation of long-term mass balance model projections, consequently improving global sea level rise predictions over the next century. Multiple recent "exceptional" melt seasons have caused near surface ice layers to proliferate through previously low density firn. These extremes will be the new norm in the future so new model parameterisations are urgently required that can effectively characterise ice layer control on mass balance.
more_vert assignment_turned_in Project2014 - 2015Partners:Natural Resources Canada, University of Chile, University of Liverpool, Geophysical Institute of Peru (IGP), University of Chile +6 partnersNatural Resources Canada,University of Chile,University of Liverpool,Geophysical Institute of Peru (IGP),University of Chile,Geophysical Institute of Peru (IGP),Helmholtz Association of German Research Centres,University of Liverpool,NRCan,GEOMAR Helmholtz Ctr for Ocean Res Kiel,IFM-GEOMARFunder: UK Research and Innovation Project Code: NE/M005879/1Funder Contribution: 51,988 GBPThe Peru-Chile subduction zone hosts many large earthquakes. A M8.8 earthquake occurred in northern Chile in 1877, and since then, no major event had re-ruptured the area prior to April 2014. The 500 km-long zone has therefore become known as the "North Chile seismic gap". In late March 2014, many small to moderate earthquakes occurred within this gap. Activity generally migrated slightly northwards. On 2 April 2014, a M8.2 earthquake occurred in the northern part of the preceding cluster, followed by many aftershocks, including a M7.6 event. Aftershock activity continues and, since the rest of the area has not experienced a major earthquake for well over a century, another large event in the area in the near future or medium term cannot be ruled out. In order to measure aftershock activity in the area of the seismic gap that ruptured recently, in addition to any other events that may occur nearby, we propose to install seismometers in the Peruvian coastal region and also offshore Chile. There are two main reasons for doing this. Firstly, the extra networks will dramatically improve station coverage around the seismic gap area, enabling us to generate detailed models of the subduction zone. This will be of great benefit for future analyses of seismic activity in this earthquake-prone area. Secondly, our records of the ongoing seismic activity will enable us to locate aftershocks accurately and infer what type of faulting occurred. This will enable us to build up a very detailed picture of how post-earthquake processes relate to preceding large seismic events. We will also use satellite radar images to construct maps of how the surface of the Earth has moved as a result of the recent seismic activity. These deformation maps can be used in computer models to estimate the location and magnitude of slip that occurred on faults beneath the surface - for instance, on the subduction zone interface, where the mainshock occurred. Essentially we are using surface measurements to infer sub-surface processes. Results from the seismological and satellite components of our project will be integrated to give us an in-depth understanding of the properties and processes occurring in the North Chile seismic gap. For instance, we will look at the spatial relationship between the area that ruptures in major earthquakes and the location of foreshock/aftershock sequences. Another important issue is to identify areas on the subduction zone interface that have not yet slipped, and that could therefore rupture in major earthquakes in the future.
more_vert assignment_turned_in Project2021 - 2023Partners:NRCan, Naturalis Biodiversity Center, CFS, Canadian Forest Service, Space For Life Museum Montreal +14 partnersNRCan,Naturalis Biodiversity Center,CFS,Canadian Forest Service,Space For Life Museum Montreal,McGill University,NERC Centre for Ecology & Hydrology,UK CENTRE FOR ECOLOGY & HYDROLOGY,University of Sherbrooke,AU,Fauna and Flora International,McGill University,University of Sherbrooke,Smithsonian Tropical Research Institute,Naturalis Biodiversity Center,FFI,STRI,UK Ctr for Ecology & Hydrology fr 011219,Space For Life Museum MontrealFunder: UK Research and Innovation Project Code: NE/W004216/1Funder Contribution: 100,310 GBPInsects are the little things that run the world (E.O. Wilson). With increasing recognition of the importance of insects as the dominant component of almost all ecosystems, there are growing concerns that insect biodiversity has declined globally, with serious consequences for the ecosystem services on which we all depend. Major gaps in knowledge limit progress in understanding the magnitude and direction of change, and hamper the design of solutions. Information about insects trends is highly fragmented, and time-series data is restricted and unrepresentative, both between different groups of insects (e.g. lepidoptera vs beetles vs flies) and between different regions. Critically, we lack primary data from the most biodiverse parts of the world. For example, insects help sustain tropical ecosystems that play a major role in regulating the global climate system and the hydrological cycle that delivers drinking water to millions of people. To date, progress in insect monitoring has been hampered by many technical challenges. Insects are estimated to comprise around 80% of all described species, making it impossible to sample their populations in a consistent way across regions and ecosystems. Automated sensors, deep learning and computer vision offer the best practical and cost-effective solution for more standardised monitoring of insects across the globe. Inter-disciplinary research teams are needed to meet this challenge. Our project is timely to help UK researchers to develop new international partnerships and networks to underpin the development of long-term and sustainable collaborations for this exciting, yet nascent, research field that spans engineering, computing and biology. There is a pressing need for new research networks and partnerships to maximize potential to revolutionise the scope and capacity for insect monitoring worldwide. We will open up this research field through four main activities: (a) interactive, online and face-to-face engagement between academic and practitioner stakeholders, including key policy-makers, via online webinars and at focused knowledge exchange and grant-writing workshops in Canada and Europe; (b) a knowledge exchange mission between the UK and North America, to share practical experience of building and deploying sensors, develop deep learning and computer vision for insects, and to build data analysis pipelines to support research applications; (c) a proof-of-concept field trial spanning the UK, Denmark, The Netherlands, Canada, USA and Panama. Testing automated sensors against traditional approaches in a range of situation; (d) dissemination of shared learning throughout this project and wider initiatives, building a new community of practice with a shared vision for automated insect monitoring technology to meet its worldwide transformational potential. Together, these activities will make a significant contribution to the broader, long-term goal of delivering the urgent need for a practical solution to monitor insects anywhere in the world, to ultimately support a more comprehensive assessment of the patterns and consequences of insect declines, and impact of interventions. By building international partnerships and research networks we will develop sustainable collaborations to address how to quantify the complexities of insect dynamics and trends in response to multiple drivers, and evaluate the ecological and human-linked causes and consequences of the changes. Crucially, this project is a vital stepping-stone to help identify solutions for addressing the global biodiversity crisis as well as research to understand the biological impacts of climate change and to design solutions for sustainable agriculture. Effective insect monitoring underpins the evaluation of future socio-economic, land-use and climate mitigation policies.
more_vert assignment_turned_in Project2020 - 2024Partners:WSP Group plc, Energy Technology Partnership, Natural Resources Canada, Drilcorp, Town Rock Energy Ltd +16 partnersWSP Group plc,Energy Technology Partnership,Natural Resources Canada,Drilcorp,Town Rock Energy Ltd,NRCan,Scottish and Southern Energy,University of Edinburgh,Star Refrigeration Ltd,Natural Power,SP Energy Networks,WSP Civils,Scottish and Southern Energy SSE plc,Ristol Consulting,Town Rock Energy Ltd,Star Refrigeration Ltd,Ristol Consulting,Drilcorp,Scottish Power Energy Networks Holdings Limited,Natural Power,Energy Technology PartnershipFunder: UK Research and Innovation Project Code: EP/T023112/1Funder Contribution: 1,445,830 GBPThis project evaluates the potential of Seasonal Thermal Energy Storage (STES) systems to facilitate the decarbonisation of heating and cooling while at the same time providing flexibility services for the future net-zero energy system. The Committee on Climate Change's recent report highlighted that a complete decarbonisation of the building, industry and electricity sectors is required to reach net-zero. Current estimates are that 44% of the total energy demand in the UK is due to heat demand which has large seasonal variations (about 6 times higher in winter compared to summer) and high morning peak ramp-up rates (increase in heat demand is 10 times faster than the increase in electricity demand). Currently, around 80% of the heat is supplied through the natural gas grid which provides the flexibility and capacity to handle the large and fast variations but causes large greenhouse gas emissions. While cooling demand is currently very small in the UK, it is expected to increase significantly: National Grid estimates an increase of up to 100% of summer peak electricity demand due to air conditioning by 2050. In countries such as Denmark, district energy systems with Seasonal Thermal Energy Storage (STES) are already proving to be affordable and more sustainable alternatives to fossil fuel-based heating that are able to handle the high ramp-up rates and seasonal variations. However, the existing systems are usually designed and operated independently from the wider energy system (electricity, cooling, industry and transport sectors), while it has been shown that the best solution (in terms of emissions reduction and cost) can only be found if all energy sectors are combined and coordinated. In particular, large STES systems which are around 100 times cheaper per installed kWh compared to both electricity and small scale domestic thermal storage, can unlock synergies between heating and cooling demand on one side, and industrial, geothermal and waste heat, and variable renewable electricity generation on the other side. However, the existing systems cannot be directly translated to the UK due to different subsurface characteristics and different wider energy system contexts. In addition, the multi-sector integration is still an open challenge due to the complex and nonlinear interactions between the different sectors. This project will develop a holistic and integrated design of district energy systems with STES by considering the interplay and coordination between energy supply and demand, seasonal thermal storage characteristics, and regulation and market frameworks. The results and models from the individual areas will be combined in a whole system model for the design and operation of smart district energy systems with STES. The whole system model will be used to develop representative case studies and guidelines for urban, suburban and campus thermal energy systems based around the smart integration of STES systems. The results will enable the development and deployment of low carbon heating and cooling systems that provide affordable, flexible and reliable thermal energy for the customers while also improving the utilisation of the grid infrastructure and the integration of renewable generation assets and other heat sources.
more_vert assignment_turned_in Project2017 - 2021Partners:Met Office, MET OFFICE, JHU, University of Otago, Natural Resources Canada +20 partnersMet Office,MET OFFICE,JHU,University of Otago,Natural Resources Canada,TCD,Met Office,NASA,Finnish Meteorological Institute,NRCan,[no title available],Johns Hopkins University,North China Electric Power University,NERC British Geological Survey,UCT,British Geological Survey,UGOE,Beihang University (BUAA),University of Goettingen (to be replaced,Goethe University Frankfurt,FMI,University of Otago,Beihang University,NASA,NCEPUFunder: UK Research and Innovation Project Code: NE/P017231/1Funder Contribution: 688,773 GBPSpace weather describes the changing properties of near-Earth space, which influences the flow of electrical currents in this region, particularly within the ionosphere and magnetosphere. Space weather results from solar magnetic activity, which waxes and wanes over the Sunspot cycle of 11 years, due to eruptions of electrically charged material from the Sun's outer atmosphere. Particularly severe space weather can affect ground-based, electrically conducting infrastructures such as power transmission systems (National Grid), pipelines and railways. Ground based networks are at risk because rapidly changing electrical currents in space, driven by space weather, cause rapid geomagnetic field changes on the ground. These magnetic changes give rise to electric fields in the Earth that act as a 'battery' across conducting infrastructures. This 'battery' causes geomagnetically induced currents (GIC) to flow to or from the Earth, through conducting networks, instead of in the more resistive ground. These GIC upset the safe operation of transformers, risking damage and blackouts. GIC also cause enhanced corrosion in long metal pipeline networks and interfere with railway signalling systems. Severe space weather in March 1989 damaged power transformers in the UK and caused a long blackout across Quebec, Canada. The most extreme space weather event known - the 'Carrington Event' of 1859 - caused widespread failures and instabilities in telegraph networks, fires in telegraph offices and auroral displays to low latitudes. The likelihood of another such extreme event is estimated to be around 10% per decade. Severe space weather is therefore recognised in the UK government's National Risk Register as a one-in-two to one-in-twenty year event, for which industry and government needs to plan to mitigate the risk. Some studies have estimated the economic consequence of space weather and GIC to run to billions of dollars per day in the major advanced economies, through the prolonged loss of electrical power. There are mathematical models of how GIC are caused by space weather and where in the UK National Grid they may appear (there are no models of GIC flow in UK pipelines or railway networks). However these models are quite limited in what they can do and may therefore not provide a true picture of GIC risk in grounded systems, for example highlighting some locations as being at risk, when in fact any problems lie elsewhere. The electrical model that has been developed to represent GIC at transformer substations in the National Grid misses key features, such as a model of the 132kV transmission system of England and Wales, or any model for Northern Ireland. The conductivity of the subsurface of the UK is known only partly and in some areas not at all well. (We need to know the conductivity in order to compute the electric field that acts as the 'battery' for GIC.) The UK GIC models only 'now-cast', at best, and they have no forecast capability, even though this is a stated need of industry and government. We do not have tried and tested now-cast models, or even forecast models, of magnetic variations on the ground. This is because of our under-developed understanding of how currents flow in the ionosphere and magnetosphere, how these interconnect and how they relate to conditions in the solar wind. In this project we will therefore upgrade existing or create new models that relate GIC in power, pipe and railway networks to ionospheric, magnetospheric and solar wind conditions. These models will address the issues we have identified with the current generation of models and their capabilities and provide accurate data for industry and governments to assess our risk from space weather. In making progress on these issues we will also radically improve on our physical understanding of the way electrical currents and electromagnetic fields interact near and in the Earth and how they affect the important technologies we rely on.
more_vert
chevron_left - 1
- 2
- 3
chevron_right
