Umeå University
ISNI: 0000000110343451
FundRef: 501100004886 , 501100010794 , 501100008461 , 501100004885
Wikidata: Q1144565
ISNI: 0000000110343451
FundRef: 501100004886 , 501100010794 , 501100008461 , 501100004885
Wikidata: Q1144565
Umeå University
Funder
249 Projects, page 1 of 50
Open Access Mandate for Publications and Research data assignment_turned_in Project2025 - 2029Partners:Umeå UniversityUmeå UniversityFunder: European Commission Project Code: 101116253Overall Budget: 2,048,120 EURFunder Contribution: 2,048,120 EURHarnessing twisted light (light carrying orbital angular momentum) on the nanoscale, and its interaction with magnetism, can revolutionize how we encode and process information. In fact, twisted electromagnetic fields can enable a superior control over the motion of the electrons and their spin compared to circularly polarized light. Yet, a clear demonstration that it is possible to act on magnetism using twisted light has still to be established. The main challenge is to find an approach to generate nanoscale electromagnetic fields carrying orbital angular momentum, which can be exploited to drive magnetism with extreme (few nanometers) spatial resolution, at the intrinsic time scale (few tens of femtoseconds) of the fundamental magnetic interactions (exchange and spin-orbit coupling) responsible for the magnetic order in matter. This feature is essential for the development of ultrafast opto-magnetic applications in spintronics, where a major goal is the coherent control of nanoscale magnetic bits. In MagneticTWIST I tackle this challenge and propose the way towards nanoscale control of ultrafast magnetic phenomena by exploiting twisted plasmons, that is plasmon polaritons (light-induced coherent collective oscillations of free electrons in metals) carrying orbital angular momentum and driven by femtosecond light pulses. This strategy will enable a coherent transfer of orbital angular momentum to the electronic spin and orbital degrees of freedom at the nanoscale. In this way, I will disclose new types of light-matter interactions and new kinds of opto-magnetic effects, with a ground-breaking impact on ultrafast magnetism, spintronics and light-driven electronics. Beyond this, MagneticTWIST will open a radically new path enabling to store and process an infinite amount of information on different spatiotemporal levels, impacting also other research fields such as cryptography, artificial intelligence, and quantum technology.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::e1bd012f14f4c061e1a8ff50cd083b95&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::e1bd012f14f4c061e1a8ff50cd083b95&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2024 - 2026Partners:Umeå UniversityUmeå UniversityFunder: European Commission Project Code: 101150699Funder Contribution: 222,728 EURSustainable, recyclable, and low-cost light-emitting technologies are projected to revolutionize the lighting market by introducing new applications in disease treatment, packaging, architecture, and fashion. The light-emitting electrochemical cell (LEC) may become such a disruptive lighting technology. It can be fabricated from biodegradable materials using cost-efficient printing or coating and offers soft areal emission from flexible and thin luminaires. In contrast to established (organic) LEDs, an LEC comprises only one active layer in which an organic semiconductor is blended with an electrolyte. Under operating voltage, the mobile ions redistribute and form self-organized charge-injection and transport regions. While being a promising concept for versatile, next-generation lighting, LECs currently suffer from inadequate operating lifetime and efficiency. Recent data suggest that the same ion redistribution that enables single-layer functionality also induces severe exciton-polaron quenching. This causes a reduction in light emission by about a factor of two and fast material degradation. Building on this new insight, I want to combine the expertise of OPEG, a leading group in LEC research, with my knowledge in optoelectronic characterization and modeling to develop a better understanding and control of the ion redistribution process in LECs. The associated suppression of ion-induced exciton-polaron quenching has the potential to enhance the LEC efficiency and lifetime towards industrial relevance, rendering it a promising next-generation light source.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::8aa9e1fe4dfacf2c103a0281675a8826&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::8aa9e1fe4dfacf2c103a0281675a8826&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2026 - 2028Partners:Umeå UniversityUmeå UniversityFunder: European Commission Project Code: 101202752Funder Contribution: 236,340 EURGram-positive (G+) bacteria, such as the Enterococcus species faecium and faecalis, cause around half of hospital-acquired infections. These infections are increasingly antimicrobial-resistant (AMR), which presents a major challenge for tackling the global burden of disease. AMR arises from mutant genes, which can be inherited, and also spread between bacterial species by conjugation through type 4 secretion systems (T4SS), which are protein complex. T4SS are an attractive target for new antibioitics, but development has proven difficult without detailed structural information on these molecular machines. Information is especially lacking for G+ species, which we will address. This project will use cryogenic electron microscopy and tomography to study the T4SS of E. faecalis and obtain the first high-resolution and in situ structures of any G+ T4SS, combining my experience with the cryo-EM of membrane protein complexes and the host’s expertise in G+ T4SS. We will reveal the molecular architecture of a critical conjugation machine and its network of protein-protein interactions. This will enable the precise mechanism of gene transfer and essential (targetable) proteins to be determined.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::06f60e794f227894a0cac681fafb67c2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::06f60e794f227894a0cac681fafb67c2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2019 - 2026Partners:Umeå UniversityUmeå UniversityFunder: European Commission Project Code: 802631Overall Budget: 1,477,560 EURFunder Contribution: 1,477,560 EURPrevious research has investigated the relationship between unemployment and health from a perspective of an isolated individual. HEALFAM takes a novel approach and examines how transition to unemployment triggers diffusion of ill mental and physical health within families. It investigates how becoming unemployed affects health outcomes of partners, children and elderly parents of the unemployed and whether the magnitudes of these influences differ across families and societies. Thus, instead of viewing the unemployed as functioning in isolation, HEALFAM assesses the consequences of unemployment for family members taking a multi-actor perspective and international comparative approach. Guided by the life course theoretical framework, which views health and well-being as a process rather than a state and calls for considering interrelatedness of individuals, HEALFAM employs longitudinal data that provide information about multiple members of families. In order to analyse these datasets, HEALFAM uses longitudinal dyadic data analysis techniques as well as multilevel models for longitudinal data. HEALFAM aims to open a new frontline of research on health and wellbeing from a life course perspective. It benefits from my knowledge on three interrelated social phenomena: (1) the role of labour market career and experiences of unemployment (2) family structure and intra-family resources (3) social antecedents of health and wellbeing among family members. It draws on high quality register and panel survey data as well as the expertise at the interdisciplinary research centres that I am connected to at Umeå University. Through international collaborations, it brings together experts in multiple disciplines carrying out research taking a life course perspective.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::cd43a1526a9ec515d6859193714acf0f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::cd43a1526a9ec515d6859193714acf0f&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications assignment_turned_in Project2016 - 2021Partners:Umeå UniversityUmeå UniversityFunder: European Commission Project Code: 647125Overall Budget: 1,999,870 EURFunder Contribution: 1,999,870 EURIn Europe today disabled people comprise some 65 million (10%). Yet they are marginalized in society and research, and little is known on how disabilities become liveable. This project challenges this bias by proposing to investigate ‘liveable disabilities’ as a function of disability and opportunity structures across time. It analyses four life course dimensions: disabled people’s (1) health and well-being; (2) involvement in education and work; (3) in a partner relationship and family; and (4) in leisure structures. Through this I identify liveable disabilities before, during and after the Swedish welfare state. The results are of significant cross-national interest as they form a useful baseline for what constitutes liveable disabilities, which helps governing bodies maximize opportunity structures for disabled people to participate fully in society. This proposal is unique in employing mixed-methods life course research across time. First, it involves quantitative analysis of Sweden’s long-term digitized population databases, which reflect how disability impacts on people’s educational, occupational, marital and survival chances. The statistical outcome is novel in demonstrating how different impairments intersect with human characteristics relative to society’s structures of the past 200 years. Second, qualitative analyses uncover how disabled people today experience and talk about the above dimensions (1-4) themselves, and how mass media depict them. Third, I make innovative studies of leisure structures, which may promote liveable disabilities. The proposal aims to establish me at the forefront of disability research. It benefits from my scholarship in history and demography and from three excellent centres at Umeå University I am connected to, funded by the Swedish Research Council. One centre researches populations, another gender. The third provides expertise in disability studies and ready access to stakeholders outside academia.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::3892afab5531a9849e674d669e8345cc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::3892afab5531a9849e674d669e8345cc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right