Powered by OpenAIRE graph

INRA Transfert (France)

INRA Transfert (France)

Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
126 Projects, page 1 of 26
  • Funder: European Commission Project Code: 773383
    Overall Budget: 6,478,660 EURFunder Contribution: 6,000,000 EUR

    The goal of B4EST is to increase forest survival, health, resilience and productivity under climate change and natural disturbances, while maintaining genetic diversity and key ecological functions, and fostering a competitive EU bio-based economy. B4EST will provide forest tree breeders, forest managers and owners, and policy makers with: 1) better scientific knowledge on adaptation profiles and sustainable productivity, and added value of raw materials in important European tree species for forestry, 2) new and flexible adaptive tree breeding strategies, 3) tree genotypes of highly adaptive and economical value, 4) decision-support tools for the choice and use of Forest Reproductive Material (FRM) while balancing production, resilience and genetic diversity, including case studies developed with industrial partners, 5) integrative performance models to guide FRM deployment at stand and landscape level, 6) economic analyses of risks/benefits/costs, and 6) policy recommendations. B4EST will capitalise on the resources developed by past and current EU projects to produce -together with tree breeders, forest managers and owners, and the industry- operational solutions to better adapt forests to climate change and reinforce the competitiveness of the EU forest-based sector. To cover the geographical, economic and societal needs of forestry in the EU, B4EST will work with 8 (six native, two non-native) conifers and broadleaves with advanced breeding programmes (Norway spruce, Scots pine, maritime pine, poplars, Douglas-fir, eucalypts) or that are case studies of pest-threatened forests (ash) or valuable non-wood products (stone pine). Our approach will result in a high degree of data and knowledge integration, involving multiple and new target traits and their trade-offs; genomic information; temporal and spatial assessments in a wide range of environments; stakeholder demands; and forest owner and manager risk perception and acceptability of new breeding strategies.

    more_vert
  • Funder: French National Research Agency (ANR) Project Code: ANR-21-MATP-0701
    Funder Contribution: 7,000,000 EUR
    more_vert
  • Funder: European Commission Project Code: 226299
    more_vert
  • Funder: European Commission Project Code: 101081974
    Overall Budget: 5,184,370 EURFunder Contribution: 4,997,680 EUR

    Climate-resilient sunflower crops can help to reduce the EU dependency on imports of vegetable oils and proteins shifting towards sustainable alternatives, to mitigate the impact of agricultural production on water use and greenhouse gas emissions, to grow resources for pollinators, and to promote biodiversity. HelEx will generate the knowledge and use innovative tools to accelerate the breeding of sunflower varieties adapted to extreme drought and heat stresses, while improving their environmental impact and assessing their socio-economic value of the resulting innovations along the value chains. HelEx will thereby consider two related groups of traits increasingly impacted by climate change, i.e. the eco-systemic service to pollinators and seed quality. For this, HelEx brings together scientists, SMEs, and industries representing an international consortium of experts in sunflower ecology, physiology and genomics; plant biotechnology and breeding; pollinator biology and ecology; environmental impact assessment and feedstock processing; and socioeconomic assessment at different scales. This HelEx multi-disciplinary consortium will explore the genetic and molecular processes involved in tolerance to drought and heat in wild extremophile Helianthus species, and identify favorable wild alleles introgressed into cultivated sunflower, for seed quality and pollinator attractiveness resilience (WP1). These processes will be transfered using classical marker-assisted selection and innovative genome editing approaches (WP2), and the environmental and biodiversity impact of these new climate-smart sunflowers assessed (WP3). HelEx will investigate the socio-economic impact and benefits in relevant value chains for different feedstock (WP4). Our communication strategy (WP5) will engage a variety of societal stakeholders to ensure feedback and enhance project progress and outcomes, and make transparent the broader dimensions of plant biotechnology, biodiversity, and benefit sharing

    more_vert
  • Funder: French National Research Agency (ANR) Project Code: ANR-10-DPBS-0002
    Funder Contribution: 26,999,700 EUR
    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.