Powered by OpenAIRE graph

R2M Solution (Italy)

R2M Solution (Italy)

55 Projects, page 1 of 11
  • Funder: European Commission Project Code: 792073
    Overall Budget: 7,740,440 EURFunder Contribution: 5,818,970 EUR

    HyCool Project Mission is increasing the current use of Solar Heat in Industry Processes, and to do so the project proposes the coupling of a new Fresnel CSP Solar thermal collectors (FCSP) with specially build Hybrid Heat Pumps (HHP) (a “two-in one” combination of adsorption and compressor based heat pumps) for a wider output temperature range (Solar Heating & Cooling –SHC-), and to provide a wide range of design and operational configurations to better fit each case, hence increasing the potential implementation of the proposed Solar Heat in industrial environments. The two main features of HyCool System are Flexibility and Efficiency an they will allow different strategies for a technically and economically viable system. During Capital Expeditures phase simplicity will be aimed pursuing easiness in design configuration optimization, modular construction and ITS for commissioning. During Operational Expenditures the optimum balance between the HyCool System Operational Flexibility and Efficiency will be targeted to maximize HyCool cost effectiveness to each individual case. Following this, the pilots proposed will demonstrate both opposed strategies in two selected key leading industry sectors: Food Case Pilot targets specialized small Food industries in high solar irradiation areas with cooling needs in their processes. Here narrow configurations are aimed to optimize Efficiency, so a simple system will be selected to obtain maximum outputs based on the conditions of use. Chemical Case Pilot target industries with several processes in high solar irradiation areas with steam and cooling needs. Here a more complex configuration is aimed to optimize Operational Flexibility, so a more complex system will be implemented, able to be switched among different options based on weather, season and production schedule. Finally, special consideration will be taken in building trust during HyCool communication and results dissemination during the project.

    more_vert
  • Funder: European Commission Project Code: 952119
    Overall Budget: 9,213,270 EURFunder Contribution: 7,999,800 EUR

    KITT4SME specifically targets European SMEs and mid-caps to provide them with scope-tailored and industry-ready hardware, software and organisational kits, delivered as a modularly customisable digital platform, that seamlessly introduce artificial intelligence in their production systems. Uptake of the resulting packages and of the provided services is strongly supported by the clear characterisation and market readiness of the individual components as well as by the platform grounding on the already established RAMP marketplace. Leverage on the network of Digital Innovation Hubs, three of which are represented in the consortium, ensure that KITT4SME are widely distributed to a wide audience of companies in Europe. Seamless adoption of the customised kits is made possible by a Powered by FIWARE infrastructure that flawlessly combine factory systems (such as MES and ERP), IoT sensors and wearable devices, robots, collaborative robots and other factory data sources with functional modules capable to trigger data-driven value creation.

    more_vert
  • Funder: European Commission Project Code: 689817
    Overall Budget: 7,998,280 EURFunder Contribution: 6,996,210 EUR

    INNOQUA will accelerate the path to market of a modular set of innovative, patent protected, award winning and scalable fully ecological sanitation solutions that address wide market needs in rural communities, for agricultural industries, for sustainable home-builders or collective housing owners and for developing countries worldwide. The modular system is based on the purification capacity of biological organisms (worms, zooplankton and microorganism) and sorption materials bringing ecological, safe and affordable sanitation capacity where it is needed most while fully addressing the thematic and cross cutting priorities of the EIP on Water. We will perform demonstration scale deployment and resulting exploitation of the system to include commercial development, technology integration, eco-design, controlled environment pilots (in NUI Galway facilities in Ireland and UDG facilities in Spain), real use demo sites and market uptake preparation in several EU and non-EU countries (France, Italy, Ireland, Romania, UK, Ecuador, Peru, India and Tanzania), and further preparation for post project uptake. Such an integrated solution is innovative and has not been employed in the past. This integrated but modular solution for the final reuse of wastewater is particularly attractive for small to medium remote water stressed European communities with high water demand for either agriculture and/or the conservation of natural freshwater ecosystems. The system is aimed at being a sustainable solution for ‘zero’ wastewater production with the complete reuse of wastewater. The system is ideal for small to medium scale situations where an integrated solution for the treatment of wastewater is required to reduce the waste directed to surface freshwaters for the attainment of good quality water, as stated by the Water Framework Directive. The robust but efficient technologies are also ideal for deployment in markets where resources are limited and skilled staff unavailable.

    more_vert
  • Funder: European Commission Project Code: 680708
    Overall Budget: 7,900,340 EURFunder Contribution: 6,675,030 EUR

    Measurement campaigns have shown major discrepancies in buildings energy performance between planned energy demand and real energy consumption, while nowadays most of the newly constructed offices buildings are equipped with BMS systems, integrating a more or less extended measurement layer providing large amounts of data. Their integration in the building management sector offers an improvement capability of 22 % as some studies demonstrate. The HIT2GAP project will develop a new generation of building monitoring and control tools based on advanced data treatment techniques allowing new approaches to assess building energy performance data, getting a better understanding of building’s behaviour and hence a better performance. From a strong research layer on data, HIT2GAP will build on existing measurement and control tools that will be embedded into a new software platform for performance optimization. The solution will be: - Fully modular: able to integrate several types and generations of data treatment modules (different algorithms) and data display solutions, following a plug and play approach - Integrating data mining for knowledge discovery (DMKD) as a core technique for buildings’ behaviour assessment and understanding The HIT2GAP solution will be applied as a novel intelligent layer offering new capability of the existing BMS systems and offering the management stakeholders opportunities for services with a novel added value. Applying the solutions to groups of buildings will also allow to test energy demand vs. local production management modules. This will be tested in various pilot sites across Europe. HIT2GAP work will be realized with a permanent concern about market exploitation of the solutions developed within the project, with specific partnerships about business integration of the tools in the activity of key energy services partners of the consortium.

    more_vert
  • Funder: European Commission Project Code: 619682
    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.