Powered by OpenAIRE graph

Nokia (Ireland)

Nokia (Ireland)

Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
11 Projects, page 1 of 3
  • Funder: UK Research and Innovation Project Code: EP/V051377/1
    Funder Contribution: 877,216 GBP

    Analogue-to-digital converters (ADCs) are the essential links between physical world in which all signals are 'analogue' (e.g., electric current generated by a microphone or a picture captured by a mobile phone camera) and the digital world of '0s' and '1s', where we store, transmit and process signals and information. ADCs enable (digital) computers to process signals from the (analogue) physical world. This capability has revolutionised our entire society, making computers (desk-tops, lap-tops, or smartphones) ubiquitous. In recent years, we have witnessed a dramatic increase of the amount of information that is generated, stored, transmitted, and processed, driven by increased demand of our society on data and information and newly emerging applications such as virtual and augmented reality. All this information needs to be processed by ADCs, which can address the abovementioned need only when performing with better accuracy, affordable power consumption, in real-time (with low latency), and for increasingly broader bandwidth (faster) signals. This is extremely challenging with currently-existing technologies and is being vigorously pursued by both academia and industry. Most of these approaches are based on strategies like the use of application-specific integrated circuits (ASICs), photonic time stretch, or time interleaving. Unfortunately, all of these approaches seem to have formidable challenges. A clearly realisable route to next-generation ADCs that could support information growth in the next decade and beyond is currently lacking. ORBITS aims to provide a radically novel and future-growth-proof solution to ADCs using optical assisted means. Specifically, it will exploit unique features of recently-emerged optical and photonics technologies, including optical frequency combs, coherent optical processing, and precise optical phase control. Optics offers three orders of magnitude larger bandwidth than microwave electronics used for ADCs today and has the advantages of ultrafast (femtosecond level) responses. The optical frequency comb technologies, in conjunction with coherent optical processing and phase control, enables dividing signal with high accuracy in the optical domain, which overcomes the fundamental limits such as timing jitter (time uncertainty) in conventional approaches, opening up a scalable and integratable technology for large bandwidth high resolution ADCs. For practical (low-cost when volume-manufactured, compact, and low-power-consuming) implementation, ORBITS will investigate optical and electronic integration, which permit to harness merits across different photonics integration platforms, through collaborations and open foundries. Besides next-generation ADCs, ORBITS will study applications in future-proof high capacity optical and wireless communications. It assembles complementary expertise from top research groups in Universities and companies, aiming for a wide academic impact and a straightforward knowledge transfer to industry.

    more_vert
  • Funder: European Commission Project Code: 643095
    Overall Budget: 3,815,120 EURFunder Contribution: 3,815,120 EUR

    Depletion of natural resources combined with the extending footprint of mankind has led to a shift in importance of research and development topics. In the 1970s and 1980s process yield was primarily targeted, but emphasis is now focussed on resource efficiency as a primary objective. Routes for resource efficiency have to be identified and implemented to provide a more environmental and resource-oriented technology in near future. MIGRATE is planned as an ETN, gathering top-level research and development capabilities from academia and industry as well as direct application possibilities with the focus set on thermal aspects of gas flows in microstructured systems. Within MIGRATE, a number of ESR projects will cover different aspects of enhanced heat transfer and thermal effects in gases, spanning from modelling of heat transfer processes and devices, development and characterization of sensors and measurement systems for heat transfer in gas flows as well as thermally driven micro gas separators to micro-scale devices for enhanced and efficient heat recovery in automotive, aeronautics and energy generation. This unique combination of university research, SME and world leading industrial stakeholders will contribute in a significant way to the increase of knowledge about micro scale gas flow heat transfer problems as well as to industrial applications of highly efficient miniaturized devices. A characteristic of MIGRATE is the high degree of applicability and the intense training. About 30% of the beneficiaries are from private sector. Thus, ESR projects will be developed in both directions, fundamental academic knowledge as well as direct application in industrial environment. The training of the ESRs is set in the same way to provide a broad variety of skills, reaching from classical academic research to IPR management and all-day-business in a company, being summarized under the aspect of resource efficiency and environmental-friendly technological approaches.

    more_vert
  • Funder: UK Research and Innovation Project Code: EP/K00042X/1
    Funder Contribution: 4,595,360 GBP

    We are on the verge of a global revolution in lighting, as efficient and robust light emitting diode (LED) based 'solid state lighting' (SSL) progressively replaces traditional incandescent and even fluorescent lamps and finds its way into new areas including signage, illumination, signalling, consumer electronics, building infrastructure, displays, clothing, avionics, automotive, sub-marine applications, medical prosthetics and so on. This technology has tended to be viewed, so far, primarily as a way to improve energy- and spectral-efficiency, but what has been relatively little studied or appreciated is its profound implications for the future of communications. We envisage the tremendous prospect of an entirely new form of high bandwidth communications infrastructure to complement, enhance and in some cases supercede existing systems. This LED-based technology will utilise the visible spectrum, largely unused for communications at present and more than 10,000 broader than the entire microwave spectrum. This promises to help address the 'looming spectral crisis' in RF wireless communications and to permit deployment in situations where RF is either not applicable (e.g. in underwater applications) or undesirable (e.g. aircraft, ships, hospital surgeries), but the implications are more fundamental even than that. The key point, in our view, is that lighting, display, communications and sensing functions can be combined, leading to new concepts of 'data through illumination' and 'data through displays'. Imagine, for example, a 'smart room', where 'universal illuminators' provide high-bandwidth communications, sensors monitoring the environment and people within it, provide positioning information and display functions, and monitor the quality of the light. Imagine novel forms of personal communications system that combine display functions and video with multiple, high-bandwidth communications channels. These could be through mobile personal communicators (developments of mobile phones or personal digital assistants) or even wearable and mechanically flexible displays. Our ambitious programme seeks to explore this transformative view of communications in an imaginative and foresighted way. The vision is built on the unique capabilities of gallium nitride (GaN) optoelectronics to combine optical communications with lighting functions, and especially on the capability of the technology to implement new forms of spatial multiplexing, where individual elements in high-density arrays of LEDs provide independent communications channels, but can combine as displays. We envisage ultra-high data density - potentially Tb/s/mm2 - arrays of LEDs in compact and versatile forms, and will develop novel transceiver technology on this basis on both mechancially rigid and mechanically flexible substrates. We will explore the implications of this approach for multi-channel waveguide and free-space optical communications, establishing guidelines and fundamental assessments of performance which will be of long-term significance to this new form of communications.

    more_vert
  • Funder: European Commission Project Code: 644453
    Overall Budget: 5,230,040 EURFunder Contribution: 5,230,040 EUR

    The objective of this proposal is to develop and demonstrate a scalable, thermally-enabled 3D integrated optoelectronic platform that can meet the explosion in data traffic growth within ICT. The Thermally Integrated Smart Photonics Systems (TIPS) program will heterogeneously integrate micro-thermoelectric coolers (μTEC) and micro-fluidics (μFluidics) with optoelectronic devices (lasers, modulators, etc.) in order to precisely control device temperature and thus device wavelength compared to commercially available discrete technology. Data traffic is projected to increase sharply (40-80× by 2020) and this is driving an increase in network complexity and the requirement for scalable optoelectronic integration. A major bottleneck to this large scale integration is thermal management. Active photonic devices generate extremely high heat flux levels (~1 kW/cm2) that must be efficiently removed to maintain performance and reliability; furthermore, active photonic devices must be controlled at temperature precision better than ±0.1°C. Today’s thermal technology is at the limit and cannot scale with growth in the network. As a comparison, electronics produce lower heat flux levels (~100 W/cm2) and have a less restrictive temperature requirement of ≤ 85±2°C. Integration of thermal management onto optoelectronic devices has not been addressed to date in academic or industrial investigations and therefore presents a significant knowledge gap that must be filled to enable impact and ensure the EU is at the forefront of optoelectronic technology. While the end goal is driven by telecom or datacom industrial requirements there are many scientific knowledge gaps that will be filled by the TIPS consortium. The application space for a thermally-integrated smart optoelectronic solution is large and spans multiple communication length scales from long reach to inter/ intrachip communications as well as other applications like sensors that seek to leverage silicon photonics platforms

    more_vert
  • Funder: European Commission Project Code: 316426
    more_vert
  • chevron_left
  • 1
  • 2
  • 3
  • chevron_right

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.