Charles University
Wikidata: Q31519
ISNI: 000000041937116X
Charles University
Funder
404 Projects, page 1 of 81
Open Access Mandate for Publications and Research data assignment_turned_in Project2018 - 2023Partners:Charles UniversityCharles UniversityFunder: European Commission Project Code: 771005Overall Budget: 1,211,380 EURFunder Contribution: 1,211,380 EURThe last 20 years of rapid development in the computational-theoretic aspects of the fixed-language Constraint Satisfaction Problems (CSPs) has been fueled by a connection between the complexity and a certain concept capturing symmetry of computational problems in this class. My vision is that this connection will eventually evolve into the organizing principle of computational complexity and will lead to solutions of fundamental problems such as the Unique Games Conjecture or even the P-versus-NP problem. In order to break through the current limits of this algebraic approach, I will concentrate on specific goals designed to (A) discover suitable objects capturing symmetry that reflect the complexity in problem classes, where such an object is not known yet; (B) make the natural ordering of symmetries coarser so that it reflects the complexity more faithfully; (C) delineate the borderline between computationally hard and easy problems; (D) strengthen characterizations of existing borderlines to increase their usefulness as tools for proving hardness and designing efficient algorithm; and (E) design efficient algorithms based on direct and indirect uses of symmetries. The specific goals concern the fixed-language CSP over finite relational structures and its generalizations to infinite domains (iCSP) and weighted relations (vCSP), in which the algebraic theory is highly developed and the limitations are clearly visible. The approach is based on joining the forces of the universal algebraic methods in finite domains, model-theoretical and topological methods in the iCSP, and analytical and probabilistic methods in the vCSP. The starting point is to generalize and improve the Absorption Theory from finite domains.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::9490abd777b40019e8dd7daf69bcb0fd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::9490abd777b40019e8dd7daf69bcb0fd&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2018 - 2023Partners:Charles UniversityCharles UniversityFunder: European Commission Project Code: 771592Overall Budget: 1,935,500 EURFunder Contribution: 1,935,500 EURMitochondria are often referred to as the “power houses” of eukaryotic cells. All eukaryotes were thought to have mitochondria of some form until 2016, when the first eukaryote thriving without mitochondria was discovered by our laboratory – a flagellate Monocercomonoides. Understanding cellular functions of these cells, which represent a new functional type of eukaryotes, and understanding the circumstances of the unique event of mitochondrial loss are motivations for this proposal. The first objective focuses on the cell physiology. We will perform a metabolomic study revealing major metabolic pathways and concentrate further on elucidating its unique system of iron-sulphur cluster assembly. In the second objective, we will investigate in details the unique case of mitochondrial loss. We will examine two additional potentially amitochondriate lineages by means of genomics and transcriptomics, conduct experiments simulating the moments of mitochondrial loss and try to induce the mitochondrial loss in vitro by knocking out or down genes for mitochondrial biogenesis. We have chosen Giardia intestinalis and Entamoeba histolytica as models for the latter experiments, because their mitochondria are already reduced to minimalistic “mitosomes” and because some genetic tools are already available for them. Successful mitochondrial knock-outs would enable us to study mitochondrial loss in ‘real time’ and in vivo. In the third objective, we will focus on transforming Monocercomonoides into a tractable laboratory model by developing methods of axenic cultivation and genetic manipulation. This will open new possibilities in the studies of this organism and create a cell culture representing an amitochondriate model for cell biological studies enabling the dissection of mitochondrial effects from those of other compartments. The team is composed of the laboratory of PI and eight invited experts and we hope it has the ability to address these challenging questions.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::392dd293aae38990944a07d126a42c59&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::392dd293aae38990944a07d126a42c59&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2024 - 2026Partners:Charles UniversityCharles UniversityFunder: European Commission Project Code: 101180584Funder Contribution: 150,439 EURBiomass and plastic recycling feedstocks hold significant potential to replace chemicals and fuels derived from fossil resources. However, their distinct chemical compositions, and large water content, present challenges to existing infrastructure and catalysts. Zeolites, widely used in chemical and fuel production, face concerns regarding their stability under hot liquid water conditions relevant for converting these novel feedstocks. Thus, understanding the mechanisms behind zeolite deactivation/stabilization is essential. The ZEOLANDO project will use an integrated approach combining experimental and computational operando methods, including NMR and vibrational spectroscopies (IR and inelastic neutron scattering), as well as neural-network-accelerated atomistic simulations. The project objective is to investigate the spatiotemporal evolution of zeolite frameworks, elucidate the structure of active sites, and explore their deactivation when exposed to water under operando conditions, i.e., at temperature, pressure and surface coverage used in catalysis. This research represents a substantial advancement over static or short dynamical simulations and conventional experimental characterization studies, that often ignore the dynamical effects arising under operando conditions. My expertise in experimental characterization, particularly utilizing NMR and vibrational spectroscopies, combined with the host group’s proficiency in advanced computational methods (including neural network potentials), uniquely positions ZEOLANDO to unveil the dynamic nature of the zeolite structure and acid site speciation under operando conditions, and can lead to the development of new and improved catalyst. By ensuring constant feedback between experimental and computational results, this project aims to enhance the understanding of zeolite behaviour during chemical reactions, offering potential benefits beyond zeolite research, and opening doors to career development opportunities.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::e0a792bce045f98e701f5e43aead1bb0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_____he::e0a792bce045f98e701f5e43aead1bb0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euassignment_turned_in Project2012 - 2015Partners:Charles UniversityCharles UniversityFunder: European Commission Project Code: 302868All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::6bdad25912118b7c3abc9e06c01365da&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda_______::6bdad25912118b7c3abc9e06c01365da&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euOpen Access Mandate for Publications and Research data assignment_turned_in Project2022 - 2024Partners:Charles UniversityCharles UniversityFunder: European Commission Project Code: 101038083Overall Budget: 144,981 EURFunder Contribution: 144,981 EURTo mitigate the effects of the current biodiversity crisis – the rapid loss of species and ecosystems – we have to understand how species evolve and how diversity is assembled. Physical distance and ecological differences can influence gene flow among individuals of a species in different ways, including the emergence of new species. As such, the evolution of diversity is often driven by geographic isolation and environmental adaptation, but the relative contribution of these processes on species diversification is not well understood. TropAlp aims to study the dynamic interplay of these two processes in driving the evolution of plant diversity to gain a better understanding of the abiotic factors fueling diversification. I will focus on two biodiversity hot-spots, the tropical alpine environments of East Africa and South America, that show differences in diversity among lineages and regions. Both ecosystems are considered island-like with similar climatic conditions but are isolated from their tropical surroundings. The key difference between them is the extent of isolation between mountain peaks. This difference permits investigating the factors that cause variation in diversity using multiple plant lineages and will contribute to a generalized and more global understanding of the evolution of diversity. The objectives of this action are (1) to delimit species; (2) to elucidate the interplay of geography and environment on diversification, and (3) to compare differences in diversity and its causes across the two continents. TropAlp enables me to apply modern phylogenomics and population genomics with comparative analyses, model-based approaches, and bioinformatics. While I have expertise in the latter, comparative phylo- and population genomics are the expertise of the host laboratory. This action will provide me with a modern skill set to become an independent, critical thinking researcher and will enhance my career chances.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::9129f50a8d0fb75c075837749b80fea6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=corda__h2020::9129f50a8d0fb75c075837749b80fea6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right