Powered by OpenAIRE graph

CHLA

Children's Hospital of Los Angeles
Funder
Top 100 values are shown in the filters
Results number
arrow_drop_down
5 Projects, page 1 of 1
  • Funder: National Science Foundation Project Code: 1419379
    more_vert
  • Funder: National Science Foundation Project Code: 0615132
    more_vert
  • Funder: National Science Foundation Project Code: 1456634
    more_vert
  • Funder: National Science Foundation Project Code: 9104769
    more_vert
  • Funder: European Commission Project Code: 668294
    Overall Budget: 7,101,720 EURFunder Contribution: 5,990,460 EUR

    Short Bowel Syndrome (SBS) is a condition that occurs when part or the entire small intestine is missing or has been removed during surgery. This condition renders the bowel incapable of fulfilling its nutritional function (intestinal failure). There is no cure for SBS. Parenteral (intravenous) nutrition (PN) and bowel transplantation are currently the preferred options for nutrition in children and adults who have lost their bowel. PN offers a low survival rate, compromised quality of life, and the economic cost for each patient is estimated to be 55,000 euro/year. Small intestinal transplant is also an option with one-year and 4-year survival rates of 90% and 60% respectively. However, because of the shortage of organs, high mortality, the severe side effects of immunosuppression and low quality of life, this is still a sub-optimal solution. The objective of this programme is to deliver a functional bowel reconstruction option to patients with SBS through an autologous tissue engineering strategy, overcoming the shortage of organs, and avoiding the need for immunosuppression. It will be achieved by identifying the best autologous cell source; providing the ideal scaffold; engineering functional intestinal mucosa for transplantation and engaging with patients, scientists and public. The work is designed to lead directly to a clinical trial for the application of the optimal protocol for tissue-engineered intestinal mucosa. The consortium is uniquely positioned to complete this ambitious effort as we have an internationally pre-eminent, multi-disciplinary team, which possesses a combination of expertise from basic molecular biology, engineering, and surgery, combining knowledge from universities, hospitals and industry. Importantly we are one of the few groups in the world with experience, infrastructure, and track record to translate regenerative medicine solutions to patients, including true clinical translation of tissue engineered organs.

    more_vert

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.

Content report
No reports available
Funder report
No option selected
arrow_drop_down

Do you wish to download a CSV file? Note that this process may take a while.

There was an error in csv downloading. Please try again later.