Universiteit Twente, Faculty of Science and Technology (TNW), Proceskunde
Universiteit Twente, Faculty of Science and Technology (TNW), Proceskunde
3 Projects, page 1 of 1
assignment_turned_in Project2013 - 2014Partners:Wageningen University & Research, Wageningen University & Research, Afdeling Agrotechnologie & Voedingswetenschappen, Fysische Chemie & Kolloïdkunde (PCC), Universiteit Twente, Faculty of Science and Technology (TNW), Proceskunde, Wageningen University & Research, Agrotechnologie & Voedingswetenschappen, Bioprocestechnologie (BPE), Corbion, Corbion Purac +3 partnersWageningen University & Research,Wageningen University & Research, Afdeling Agrotechnologie & Voedingswetenschappen, Fysische Chemie & Kolloïdkunde (PCC),Universiteit Twente, Faculty of Science and Technology (TNW), Proceskunde,Wageningen University & Research, Agrotechnologie & Voedingswetenschappen, Bioprocestechnologie (BPE),Corbion, Corbion Purac,Universiteit Twente,Corbion,Universiteit Twente, Faculty of Science and Technology (TNW), Chemical Engineering, Sustainable Process TechnologyFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: 036.002.450more_vert assignment_turned_in Project2015 - 2016Partners:Universiteit Twente, Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Technische Natuurkunde - Department of Applied Physics, Elementaire Processen in Gasontladingen (EPG), Vrije Universiteit Amsterdam, Faculteit der Bètawetenschappen (Faculty of Science), Afdeling Informatica (Computer Science), Artificial Intelligence, NWO-institutenorganisatie, Universiteit Twente, Faculty of Science and Technology (TNW), Chemical Engineering, Membrane Science and Technology (MST) +7 partnersUniversiteit Twente,Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Technische Natuurkunde - Department of Applied Physics, Elementaire Processen in Gasontladingen (EPG),Vrije Universiteit Amsterdam, Faculteit der Bètawetenschappen (Faculty of Science), Afdeling Informatica (Computer Science), Artificial Intelligence,NWO-institutenorganisatie,Universiteit Twente, Faculty of Science and Technology (TNW), Chemical Engineering, Membrane Science and Technology (MST),Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Scheikundige Technologie - Department of Chemical Engineering and Chemistry, Membrane Materials and Processes,Universiteit Twente, Faculty of Science and Technology (TNW), Proceskunde,NWO-institutenorganisatie, DIFFER - Dutch Institute for Fundamental Energy Research,Technische Universiteit Eindhoven - Eindhoven University of Technology,Universiteit van Amsterdam,Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Instituut voor Informatica (IVI),VUFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: SH-315-15As we look to advance the state of the art in content-based music informatics, there is a general sense that progress is decelerating throughout the field. On closer inspection, performance trajectories across several applications reveal that this is indeed the case: hand-crafted feature design is sub-optimal and unsustainable, the power of shallow architectures is fundamentally limited, and short-time analysis cannot encode musically meaningful structure. Acknowledging breakthroughs in other perceptual AI domains, we offer that deep learning holds the potential to overcome each of these obstacles. Consequentially, we believe that deep learning can advance the state-of-the-art in music genre recognition.
more_vert assignment_turned_in Project2015 - 2016Partners:Universiteit Twente, Faculty of Science and Technology (TNW), Proceskunde, Universiteit Twente, Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Scheikundige Technologie - Department of Chemical Engineering and Chemistry, Multiphase Reactors Group (SMM/SPI), Technische Universiteit Eindhoven - Eindhoven University of TechnologyUniversiteit Twente, Faculty of Science and Technology (TNW), Proceskunde,Universiteit Twente,Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Scheikundige Technologie - Department of Chemical Engineering and Chemistry, Multiphase Reactors Group (SMM/SPI),Technische Universiteit Eindhoven - Eindhoven University of TechnologyFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: SH-323-15We aim to quantitatively understand transport phenomena in multiphase flows, occurring in bulk, in confined geometries and in porous media. This is of importance for chemical reactor design and for enhanced oil/gas recovery. As such, this proposal is relevant for the top sectors ?Chemicals? and ?Energy?. For some of the subprojects, we have direct collaboration with the private sector (Shell, TetraPak).
more_vert
