Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Anorganische Chemie & Katalyse
Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Anorganische Chemie & Katalyse
33 Projects, page 1 of 7
assignment_turned_in Project2019 - 2021Partners:TNO Apeldoorn, Milieu, Energie en Procesinnovatie, Procestechnologie, Universiteit Utrecht, Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Anorganische Chemie & Katalyse, TNO Apeldoorn, Universiteit UtrechtTNO Apeldoorn, Milieu, Energie en Procesinnovatie, Procestechnologie,Universiteit Utrecht,Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Anorganische Chemie & Katalyse,TNO Apeldoorn,Universiteit UtrechtFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: 741.018.408Aromatic building blocks can be found in a multitude of different products we need for daily life, ranging from plastics, coatings, lubricants, to consumer products. Global consumption of commodity aromatics is over 140 million metric tons annually and is expected to double in the next twenty years, as a result of increases in global population and overall welfare. The fossil resource-based production routes for these enormous amounts of aromatic compounds are currently not sustainable and alternatives based on renewable resources are needed to enable the desired transition to a more sustainable chemical and polymer industry. Technology for production of ‘drop-in’ replacements (i.e., molecularly identical) of the currently functionalized aromatic building blocks, e.g. aromatic acids, is not yet available. In this research proposal we aim to address that gap and propose to develop a new, catalytic route to renewable aromatics, derived from the sugar fraction of lignocellulosic biomass. Diels-Alder (DA) aromatization strategies of sugar-derived furanics (see Fig 1) feature prominently in the efforts directed at renewable aromatics production, but most suffer from a major disadvantage: the oxygenated furanics that are obtained from biomass and should be ideally directly aromatized, are notoriously poor substrates for DA aromatization. In order to deal with this sluggish reactivity, a ‘redox-detour’ is most often employed involving furan reduction (e.g. 5-hydroxymethylfuran to dimethylfuran), aromatization (dimethylfuran to p-xylene), and oxidation back to the desired functionalized aromatic end product (p-xylene to terephthalic acid). This atom- and redox inefficiency are detrimental to the economic competitiveness of such a process. Here, we propose an alternative route, based on oxygenated furanics activation by reversible hydrazone formation (Fig 1). The hydrazone electronically activates the otherwise sluggish furanic diene for both the DA cycloaddition reaction and the subsequent aromatization by dehydration, after which the hydrazine activating agent can again be released and recycled. Recent exploratory research at TNO/Biorizon has shown that this route in principle holds considerable promise for commercial production of functionalized aromatics, provided that the central DA aromatization step, which has been identified as the bottleneck in terms of productivity and scope, can be improved. To achieve this step-change in DA aromatization activity, catalyst development is required, a topic not yet addressed for this hydrazone-mediated route, to improve productivity and allow a broad slate of functionalized aromatics to be synthesized. The key objectives of this proposal are therefore 1) to expand the scope of suitable dienes and dienophiles for the Diels-Alder aromatization reaction, 2) to develop (heterogeneous) catalysts with tunable acidity that allow for selective DA aromatization of the hydrazone and 3) to improve the process technology aspects of hydrazone-activated Diels-Alder aromatization by resin-immobilization of the activating agent, allowing easy handling and recycling of the mediator, semi-continuous operation, and the use of crude biorefinery effluents. The production of hemimellitic acid (HMA) from renewably sourced furfural and maleic anhydride will serve as showcase example for the new technology and, samples of this product, will be provided to the Klüber partner of the consortium to assess product quality and the effect of possible process-specific impurities on specialty aromatic lubricant performance. The strategy chosen and the improvements in productivity through catalyst development and process engineering are thus anticipated to result in a highly innovative route to renewable aromatics of commercial potential.
more_vert assignment_turned_in ProjectPartners:Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Anorganische Chemie & Katalyse, Dr Ten BV, Fluidwell, Managing Director, on2quest BV, Universiteit Twente, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), MESA+ Research Institute for Nanotechnology +27 partnersUniversiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Anorganische Chemie & Katalyse,Dr Ten BV,Fluidwell, Managing Director,on2quest BV,Universiteit Twente, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), MESA+ Research Institute for Nanotechnology,Maastricht University, Faculty of Science and Engineering, Circular Chemical Engineering,Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Scheikundige Technologie - Department of Chemical Engineering and Chemistry, Chemical Process Intensification (SPI),Leiden Probe Microscopy B.V.,LIC,TNO (former ECN),TNO Rijswijk,Technische Universiteit Delft, Faculteit Mechanical Engineering (ME), Process & Energy,Brabetech,Wageningen University & Research, Afdeling Agrotechnologie & Voedingswetenschappen,Blue Circle Olefins BV,Hanze UAS,NEM Energy BV,Saxion,HAN,Fontys University of Applied Sciences,Power to Power,Circonica Circular Energy BV,Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Debye Instituut voor Nanomaterialen Wetenschap, Material Chemistry and Catalysis (MCC),DOPS Recycling Technologies B.V.,Universiteit van Amsterdam, Faculteit der Natuurwetenschappen, Wiskunde en Informatica (Faculty of Science), Van t Hoff Institute for Molecular Sciences (HIMS), Homogeneous, Supramolecular and Bio-Inspired Catalysis,Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), Zernike Institute for Advanced Materials,FeyeCon Carbon Dioxide Technologies, FeyeCon D&I BV,NWO-institutenorganisatie, DIFFER - Dutch Institute for Fundamental Energy Research,Stichting Wageningen Research, Wageningen Food & Biobased Research (WFBR),Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Scheikundige Technologie - Department of Chemical Engineering and Chemistry, Inorganic Chemistry and Catalysis,Brusche Process Technology BV,Avans University of Applied SciencesFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: NGF.1716.24.009The research project HyCARB brings together Dutch clean-tech companies, universities and research institutes to develop the technology base for industrial end users worldwide for carbon-based chemicals production using hydrogen, green electrons and captured carbon dioxide. New scientific approaches will be pursued to achieve breakthroughs for cost- and energy-efficient sustainable production of fuels and chemicals by identifying, developing and testing improved catalysts, key components such as reactors, electrolysers and innovative approaches for electrified heating. Laboratory work using the latest generation analytical equipment will be combined with techno-economic and lifecycle assessments of a range of technologies to help industry decarbonise.
more_vert assignment_turned_in Project2019 - 2021Partners:Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Membrane Enzymology, Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Anorganische Chemie & Katalyse, Universiteit Utrecht, Universiteit Utrecht, Universiteit Utrecht, Faculteit Geowetenschappen, Departement Aardwetenschappen, Instituut voor Paleoenvironments en Paleoclimate +1 partnersUniversiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Membrane Enzymology,Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Anorganische Chemie & Katalyse,Universiteit Utrecht,Universiteit Utrecht,Universiteit Utrecht, Faculteit Geowetenschappen, Departement Aardwetenschappen, Instituut voor Paleoenvironments en Paleoclimate,Universiteit Utrecht, Universiteitsbureau, Bestuursdienst & Dienstencentra, Directie Onderwijs en OnderzoekFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: 405.19865.096Sustainable development and the related strive to make economies circular are grand challenges our world currently faces. These targets can only be achieved via an integrated and interwoven collaboration of society, science and technology. Our vision is that academic education should train a new generation of transdisciplinary connectors who are skilled to collaborate outside their comfort zone and thereby able to create innovative solutions with different stakeholders. This manner of working requires strong disciplinary knowledge but importantly, also skills to build bridges, try new things, create, philosophize and practically act. Here, we propose “The Da Vinci Project”, in which we will challenge 3rd-year Bachelor students to experiment with crossing the boundaries between scientific disciplines and work on real-life sustainability-related challenges with the involvement of stakeholders. Via an active learning-by-doing approach, we will train students to collaborate transdisciplinary, thereby broadening their horizon and teaching them connecting skills hard to acquire in a normal academic environment. Using the Comenius grant we will run a pilot for 6 groups of five students originating from different scientific disciplines. The students will solve specific sustainable development-related challenges of external parties through an integral design process. In this way, we will educate individuals able to make broader connections, who – according to research - are the ones that have real impact on change. We envisage that this project will strongly benefit a broader higher education community, as the concept and/or the developed teaching materials can be used for similar projects in other universities and scientific fields.
more_vert assignment_turned_in Project2023 - 9999Partners:Technische Universiteit Eindhoven - Eindhoven University of Technology, Technische Universiteit Delft, Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Anorganische Chemie & Katalyse, TNO Delft, Fysische Systemen en Processen, NWO-institutenorganisatie, DIFFER - Dutch Institute for Fundamental Energy Research +22 partnersTechnische Universiteit Eindhoven - Eindhoven University of Technology,Technische Universiteit Delft,Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Anorganische Chemie & Katalyse,TNO Delft, Fysische Systemen en Processen,NWO-institutenorganisatie, DIFFER - Dutch Institute for Fundamental Energy Research,Leiden University,Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Technische Natuurkunde - Department of Applied Physics,Rijksuniversiteit Groningen, Faculty of Science and Engineering (FSE), Zernike Institute for Advanced Materials,Technische Universiteit Delft, Faculteit Technische Natuurwetenschappen, Chemical Engineering,TNO (former ECN), Zonne-energie,Universiteit Twente,Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Werktuigbouwkunde - Department of Mechanical Engineering, Mechanics of Materials,Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Scheikundige Technologie - Department of Chemical Engineering and Chemistry,Universiteit Utrecht,NWO-institutenorganisatie,NWO-institutenorganisatie, DIFFER - Dutch Institute for Fundamental Energy Research, Materials for Solar Fuels, photo-electro-catalysis,Technische Universiteit Delft, Faculteit Technische Natuurwetenschappen, Chemical Engineering, Catalysis Engineering,Universiteit Twente, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), MESA+ Research Institute for Nanotechnology,Universiteit Twente, Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), MESA+ Research Institute for Nanotechnology, NanoElectronics (NE),Universiteit Twente,LIC,Rijksuniversiteit Groningen,TNO Delft,TNO (former ECN),Universiteit Leiden, Faculteit der Wiskunde en Natuurwetenschappen, Leiden Institute of Chemistry (LIC), Catalysis and Surface Chemistry,Universiteit Twente, Faculty of Science and Technology (TNW), Chemical Engineering, Inorganic Materials Science (IMS),Technische Universiteit Eindhoven - Eindhoven University of Technology, Faculteit Technische Natuurkunde - Department of Applied Physics, Plasma & Materials Processing (PMP)Funder: Netherlands Organisation for Scientific Research (NWO) Project Code: 175.2021.054The energy transition requires new materials for greening chemistry and transportation. Electrolyzers and fuel cells need more efficient electrodes and more robust membranes. Scarce materials call for everyday alternatives. PLD4Energy is a Pulsed Laser Deposition (PLD) facility for producing such thin film (membrane) alternatives. It is tailored to research for energy applications. PLD has the right in-situ diagnostics to move from small to larger film areas in a controlled manner. The facility lends itself to fundamental research, as well as the next, essential step: actual implementation. PLD4Energy welcomes external researchers and also companies that want to test commercial applications.
more_vert assignment_turned_in Project2015 - 2019Partners:Tropical Diseases Research Centre, Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Debye Instituut voor Nanomaterialen Wetenschap, Inorganic Chemistry and Catalysis, Heifer International, Wageningen University & Research, Afdeling Plantenwetenschappen, Erfelijkheidsleer, Universiteit Utrecht +19 partnersTropical Diseases Research Centre,Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Debye Instituut voor Nanomaterialen Wetenschap, Inorganic Chemistry and Catalysis,Heifer International,Wageningen University & Research, Afdeling Plantenwetenschappen, Erfelijkheidsleer,Universiteit Utrecht,CSK Food Enrichment,CSK Food Enrichment,Technische Universiteit Delft, Faculteit Technische Natuurwetenschappen, NanoScience - Kavli Institute of Nanoscience Delft, Hoge Resolutie Elektronenmicroscopie,Tropical Diseases Research Centre,Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde, Anorganische Chemie & Katalyse,Yoba-for-Life,University of Zambia,Wageningen University & Research, Afdeling Agrotechnologie & Voedingswetenschappen, Food Quality and Design (FQD),Technische Universiteit Delft,University of Zambia, Directorate of Research and Graduate Studies,Wageningen University & Research,Technische Universiteit Delft, Faculteit Technische Natuurwetenschappen, NanoScience - Kavli Institute of Nanoscience Delft,Universiteit Utrecht, Faculteit Bètawetenschappen, Departement Scheikunde,Technische Universiteit Delft, Universiteitsdienst, Dienst Elektronische en Mechanische Ontwikkeling (DEMO), DEMO - Locatie Mekelweg,University of Ottawa,Yoba-for-Life,Wageningen University & Research, Afdeling Agrotechnologie & Voedingswetenschappen, Levensmiddelenmicrobiologie (FHM),University of Ottawa, Department of Biology,Heifer InternationalFunder: Netherlands Organisation for Scientific Research (NWO) Project Code: W 08.250.103This project capitalizes on the prevalence of traditional dairy and cereal-based fermented products, which are consumed on a daily basis throughout rural Zambia. Enhancement and increased availability of these foods will improve nutrition security, consumer satisfaction and livelihoods of small-scale predominantly rural women producers. To date, needs and preferences of rural and urban consumers and production processes have never been systematically analysed and aligned. Moreover, the nutritional and food safety aspects of products in relation to the currently used processing practices, including mixtures of microorganisms used for product fermentation, have not been determined and optimised. This project will define best practices to improve the food production chains themselves and better address the demands of urban and rural consumers. Moreover, tailor-made starter mixtures for fermentation will be formulated and made available by involving stakeholders, NGOs and private enterprises. These optimisations will be made durable by engaging committed stakeholders throughout the project.
more_vert
chevron_left - 1
- 2
- 3
- 4
- 5
chevron_right
