Powered by OpenAIRE graph
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2020
License: CC 0
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2020
License: CC 0
Data sources: ZENODO
DRYAD
Dataset . 2020
License: CC 0
Data sources: Datacite
versions View all 3 versions

Impacts of global environmental change drivers on non-structural carbohydrates in terrestrial plants

Authors: Du, Ying; Lu, Ruiling; Xia, jianyang;

Impacts of global environmental change drivers on non-structural carbohydrates in terrestrial plants

Abstract

1. Non-structural carbohydrates (NSCs, including soluble sugars and starch) are essential to support the growth and survival of terrestrial plants. Starch and sugars play different roles in multiple plant ecological functions such as drought tolerance, growth, and plant defense, and several other processes which are being rapidly shaped by global environmental change. However, it is uncertain whether soluble sugars and starch show different responses across plant functional types, tissue types, and treatment conditions (i.e., the intensity and duration of environmental variability) to global-change drivers. 2. Here, based on a database of 275 plants (including 17 plant functional types), we conducted a meta-analysis to examine the effects of elevated atmospheric CO2 concentration (eCO2), nitrogen (N) addition, drought and warming on NSCs and its components. 3. We found NSCs responses to global environmental change were mainly driven by i) soluble sugar changes in response to N addition and drought, as well as ii) starch changes in response to eCO2 and warming. The different responses between soluble sugars and starch were more evident under eCO2 and drought, especially in herbs or leaves. Interactive effects of multiple environmental change drivers on soluble sugars and starch were mainly additive. The divergent main and interactive effects on soluble sugars and starch depend on experimental conditions. For example, the starch responses to eCO2 and its interaction with N addition were the strongest in short-term experiments. 4. Overall, our study shows the divergent responses of soluble sugars and starch in terrestrial plants to different global environmental change drivers, suggesting a changed carbon sink-source balance in plants under future global changes. The findings also highlight that predicting plant functional changes into the future requires a mechanistic understanding of how NSCs and its components are lined with specific environmental change drivers.

Related Organizations
Keywords

Nitrogen addition, soluble sugars, starch, NSCs, CO2

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 11
    download downloads 3
  • 11
    views
    3
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
11
3